„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
MINISTERSTWO EDUKACJI
NARODOWEJ
Teresa Piotrowska
Dokonywanie pomiarów elementów optycznych
713[07].Z3.01
Poradnik dla ucznia
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy
Radom 2007
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
1
Recenzenci:
mgr inŜ. Ewa Zajączkowska
inŜ. Zbigniew Łuniewski
Opracowanie redakcyjne:
inŜ. Teresa Piotrowska
Konsultacja:
dr inŜ. Anna Kordowicz-Sot
Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 731[04].Z3.01
„Dokonywanie pomiarów elementów optycznych”, zawartego w modułowym programie
nauczania dla zawodu optyk-mechanik.
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2007
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
2
SPIS TREŚCI
1.
Wprowadzenie
3
2.
Wymagania wstępne
4
3.
Cele kształcenia
5
4.
Materiał nauczania
6
4.1.
Pomiary właściwości materiałów optycznych
6
4.1.1.
Materiał nauczania
6
4.1.2. Pytania sprawdzające
11
4.1.3. Ćwiczenia
12
4.1.4. Sprawdzian postępów
14
4.2.
Pomiary parametrów elementów optycznych
15
4.2.1. Materiał nauczania
15
4.2.2. Pytania sprawdzające
26
4.2.3. Ćwiczenia
26
4.2.4. Sprawdzian postępów
32
4.3. Czystość optyczna
33
4.3.1. Materiał nauczania
33
4.3.2. Pytania sprawdzające
35
4.3.3. Ćwiczenia
36
4.3.4. Sprawdzian postępów
37
5.
Sprawdzian osiągnięć
38
6. Literatura
44
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
3
1. WPROWADZENIE
Poradnik będzie Ci pomocny w przyswajaniu wiedzy o pomiarach elementów
optycznych: przy dobieraniu metody pomiarowej, przyrządów pomiarowych, wykonywaniu
pomiarów oraz interpretowaniu ich wyników.
W poradniku zamieszczono:
–
wymagania wstępne – wykaz umiejętności, jakie powinieneś mieć juŜ ukształtowane,
abyś bez problemów mógł korzystać z poradnika,
–
cele kształcenia – wykaz umiejętności, jakie ukształtujesz podczas pracy z poradnikiem,
–
materiał nauczania – wiadomości teoretyczne niezbędne do opanowania treści jednostki
modułowej,
–
zestaw pytań, abyś mógł sprawdzić, czy juŜ opanowałeś określone treści,
–
ćwiczenia, które pomogą Ci zweryfikować wiadomości teoretyczne oraz ukształtować
umiejętności praktyczne,
–
sprawdzian postępów,
–
sprawdzian osiągnięć, przykładowy zestaw zadań. Zaliczenie testu potwierdzi
opanowanie materiału całej jednostki modułowej,
–
literaturę uzupełniającą.
Schemat układu jednostek modułowych
731[04].Z3.01
Dokonywanie pomiarów
elementów optycznych
731[04].Z3.02
Dokonywanie pomiarów zespołów
optycznych
731[04].Z3
Ocena jakości
wyrobów optycznych
731[04].Z3.03
Sprawdzanie kompletnego sprzętu
optycznego i optoelektronicznego
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
4
2. WYMAGANIA WSTĘPNE
Przystępując do realizacji programu jednostki modułowej powinieneś umieć:
−
korzystać z róŜnych źródeł informacji,
−
stosować jednostki układu SI,
−
przeliczać jednostki,
−
posługiwać się podstawowymi pojęciami z zakresu: fizyki, charakteryzowania elementów
optycznych, wykonywanie elementów optycznych oraz wykonywanie podstawowych
pomiarów warsztatowych,
−
posługiwać się podstawowymi przyrządami pomiarowymi,
−
czytać schematy optyczne,
−
współpracować w grupie.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
5
3. CELE KSZTAŁCENIA
W wyniku realizacji programu jednostki modułowej powinieneś umieć:
–
sklasyfikować parametry materiałów optycznych,
–
opisać i zastosować urządzenia do pomiarów właściwości materiałów optycznych,
–
zorganizować stanowisko do dokonywania pomiarów elementów optycznych,
–
dokonać pomiarów współczynnika załamania,
–
dokonać pomiarów dwójłomności,
–
sprawdzić smuŜystość,
–
sprawdzić pęcherzowatość,
–
określić budowę i zastosować urządzenia do pomiarów parametrów elementów
optycznych,
–
dokonać pomiarów promienia krzywizny soczewki,
–
dokonać pomiarów mocy soczewki,
–
dokonać pomiarów ogniskowej soczewki,
–
skontrolować czystość optyczną,
–
dokonać pomiarów ogniskowych soczewek,
–
sprawdzić centralność soczewek i klinowość płytek.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
6
4. MATERIAŁ NAUCZANIA
4.1. Pomiary właściwości materiałów optycznych
4.1.1. Materiał nauczania
Do konstruowania układów optycznych obarczonych małymi aberracjami niezbędny jest
określony asortyment gatunków szkieł. Parametry określające jakość szkła optycznego to:
–
współczynnik załamania n
d
,
–
dyspersja średnia (n
F
– n
C
),
–
dwójłomność,
–
absorpcja,
–
smuŜystość,
–
pęcherzowatość.
Pomiar współczynnika załamania
Do wyznaczania współczynnika załamania słuŜą goniometry i refraktometry.
Za pomocą goniometru dokonujemy pomiaru kąta łamiącego θ i kata najmniejszego
odchylenia δ
min
pryzmatu wykonanego z badanego szkła, a następnie wyliczenie
współczynnika załamania wg wzoru
2
sin
2
sin
min
θ
δ
θ
+
=
n
Goniometr składa się z:
–
stałego kolimatora z krzyŜem lub szczeliną,
–
stolika obrotowego,
–
lunety autokolimacyjnej, związanej sztywno z dwoma noniuszami, obracającej się dokoła
osi pionowej, przechodzącej przez środek stolika,
–
poziomego kręgu podziałowego, umoŜliwiającego pomiary kątów obrotu lunety.
Rys. 1. Goniometr [9, s. 314]
Z badanego szkła wykonuje się pryzmat o kącie łamiącym ok. 60° i powierzchniach
płaskich wykonanych z odchyłką N = 1/4 prąŜka.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
7
Rys. 2. Pomiar współczynnika załamania na goniometrze [9, s. 315]
Wykonany pryzmat kładziemy na stoliku goniometru i obserwując przez lunetę obraz
szczeliny kolimatora obracamy stolikiem pryzmat i wyszukujemy takie połoŜenie, przy
którym wystąpi najmniejsze odchylenie wiązki światła przez pryzmat (rys. 2 a). Wówczas
odczytujemy kąt δ
1
połoŜenia lunety i powtarzamy tę czynność przy symetrycznym
przestawieniu pryzmatu względem osi kolimatora i odczytujemy δ
2
. RóŜnica tych dwóch
odczytów jest równa podwójnemu kątowi najmniejszego odchylenia pryzmatu.
2
2
1
2
min
2
1
min
δ
δ
δ
δ
δ
δ
−
=
⇒
−
=
Następnie ustawiamy lunetę autokolimacyjną prostopadle kolejno do obu powierzchni
łamiących pryzmatu i odczytujemy kątowe połoŜenie θ
1
i θ
2
lunety (rys. 2b). Kat łamiący
pryzmatu θ wyznaczamy z zaleŜności.
(
)
2
1
180
θ
θ
θ
−
−
°
=
Podstawiając wartość kąta łamiącego pryzmatu θ i wartość kata najmniejszego odchylenia
δ
min
do wzoru obliczamy współczynnik załamania n badanego szkła.
Współczynnik załamania moŜna równieŜ zmierzyć za pomocą refraktometru. Zasada
działania refraktometrów oparta jest na zjawisku całkowitego wewnętrznego odbicia.
Rys. 3. Zasada działania refraktometru [9, s. 316]
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
8
Promienie 1 przechodzą z ośrodka o współczynniku załamania n´ mniejszym i padają na
powierzchnię graniczną G pod kątem większym od granicznego ε
g
, odbiją się od tej
powierzchni i wychodzą z pryzmatu pod kątem ε’
1
. Promienie te zostają skupione
w płaszczyźnie ogniskowej obiektywu, tworząc jasne pole.
Promienie 3 padają na powierzchnię G pod kątami mniejszymi od kąta granicznego,
przechodzą do ośrodka badanego i są dla obiektywu stracone i dlatego w obiektywie druga
część pola jest ciemna.
Linię graniczną jasnego i ciemnego pola tworzą promienie padające pod kątami
granicznymi ε
g
. Linia graniczna umoŜliwia określenie kąta ε’. Znając współczynnik załamania
n pryzmatu pomiarowego oraz jego kąt łamiący θ, moŜemy wyznaczyć współczynnik
załamania n’ badanego ciała wg wzoru:
'
sin
sin
sin
cos
2
2
ε
θ
ε
θ
−
+
′
⋅
±
=
′
n
n
a)
b)
próbka szkła
n’
n
pryzmat
refraktometryczny
luneta z krzy
Ŝ
em
pryzmat
odchylaj
ą
cy
pryzmat Amici
kompensator
skala pomiarowa
Θ
ε
‘
n
D
%
140
14
139
35
40
40
Rys. 4. Refraktometr Abbego: a) schemat układu optycznego, b) pole widzenia [opracowanie własne]
KaŜdy z refraktometrów składa się z czterech podstawowych zespołów :
–
pryzmat refraktometryczny,
–
pryzmat Amici (zespół pryzmatów rozszczepiających światło, a nie zmieniających
kierunku promienia Ŝółtego), słuŜący do achromatyzacji linii granicznej między polem
jasnym i ciemnym,
–
lunetka z krzyŜem,
–
skala pomiarowa.
W refraktometrze Abbego znajduje się jeszcze pryzmat odchylający związany sztywno ze
skalą pomiarową, najczęściej wyskalowaną w jednostkach współczynnika załamania.
Badaną próbkę kładziemy płaską wypolerowaną stroną na powierzchni pomiarowej
pryzmatu refraktometrycznego. Pomiędzy te powierzchnie wprowadzamy ciecz immersyjną
o współczynniku załamania większym od badanej substancji. Obrotem pryzmatu
odchylającego naprowadzamy linię graniczną pola jasnego i ciemnego na środek krzyŜa
lunety, a współczynnik załamania odczytujemy ze skali (rys. 4 b).
Jeśli pryzmat oświetlimy światłem białym, to linia graniczna w lunecie będzie
zabarwiona. Obrotem pryzmatu Amici moŜemy skompensować chromatyzm linii granicznej.
Dokładność pomiaru jest rzędu 0,0002, a zakres pomiarowy wynosi od n = 1,3 do n = 1,7.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
9
Współczynnik załamania moŜemy równieŜ zmierzyć za pomocą refraktometru
Pulfricha.
n’
n
Θ
ε
‘
pryzmat
refraktometryczny
próbka szkła
Rys. 5. Zasada działania refraktometru Pulfricha [opracowanie własne]
Refraktometr ten od refraktometru Abbego róŜni się tym, Ŝe pryzmat refraktometryczny
posiada kąt łamiący θ wynosi 90° i współczynnik załamania wyraŜa się wzorem:
ε
′
−
=
′
2
2
sin
n
n
Refraktometr ten nie ma pryzmatu kompensującego Amici, gdyŜ pracuje w świetle
monochromatycznym, a elementem ruchomym jest luneta związana na sztywno z kręgiem
kątowym umoŜliwiającym wyznaczenie kątów ε’.
Refraktometrem tym moŜemy równieŜ dokonać pomiaru współczynnika załamania cieczy
i daje dokładność 0,0001.
Pomiar dyspersji średniej (n
F
– n
C
)
Do pomiaru dyspersji średniej uŜywamy refraktometru Abbego. Czynności w czasie
pomiaru są takie jak przy pomiarze współczynnika załamania.
Odczytując kąt obrotu pryzmatu Amici i posługując się tablicą załączoną do
refraktometru wyznaczamy dyspersję średnią n
F
– n
C
badanej substancji.
Pomiar dwójłomności
Dwójłomność szkła jest wywołana napręŜeniami wewnętrznymi powstałymi w procesie
studzenia. Miarą dwójłomności jest róŜnica dróg optycznych (w nm) dla promieni
zwyczajnego i nadzwyczajnego w warstwie o grubości 1 cm. Dwójłomność mierzymy za
pomocą polaryskopu.
Pomiar współczynnika absorpcji
Współczynnik absorpcji szkła optycznego jest to stosunek strumienia światła białego
pochłoniętego w warstwie szkła o grubości 1 cm do strumienia światła wpadającego do tej
warstwy. Absorpcję szkła moŜemy mierzyć z uŜyciem urządzeń fotometrycznych.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
10
Rys. 6. Przepuszczalność światła przez warstwę szkła [9, s. 163]
Na materiał optyczny (szkło) o grubości d pada strumień świetlny Ф, a opuszcza układ
strumień Ф’. Stosunek strumienia światła przechodzącego Ф’ do padającego Ф nazywamy
przepuszczalnością T danego układu optycznego:
φ
φ′
=
T
Znając przepuszczalność szkła, moŜemy obliczyć absorpcję z zaleŜności 1/T.
Aby wyznaczyć strumień świetlny Ф naleŜy dokonać pomiaru natęŜenia oświetlenia E za
pomocą fotometru i wyznaczyć z wzoru
0
0
S
E
S
E
×
=
⇒
=
φ
φ
Kontrola smuŜystości
Smugi – nitkowe pasma w szkle, w których współczynnik załamania róŜni się od
współczynnika załamania masy szklanej. Powstaje w procesie topienia masy szklanej
i spowodowana jest niejednorodnością chemiczną niektórych warstw, posiadających wskutek
tego odmienny współczynnik załamania. Wykrywamy je w układzie diafragma, źródło
światła, ekran (rys. 7).
Rys. 7. Schemat urządzenia do sprawdzania smuŜystości w szkle [9, s. 321]
Stanowisko to nazywamy cienioskopem. Jeśli w biegu promieni znajdzie się smuga, to
spowoduje ona odchylenie przechodzących promieni i na ekranie powstanie cień. Widoczność
jego zaleŜy od stosunku średnicy d źródła światła do jego odległości a od osi obrotu stolika
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
11
przedmiotowego. Im mniejszy jest ten stosunek, tym drobniejsze smugi uwidocznią się na
ekranie w postaci cienia.
Norma ustala 3 kategorie smuŜystości w zaleŜności od liczby kierunków przeglądania
szkła.
Kontrola pęcherzowatości
Pęcherze i obce wtrącenia w szkle, wykrywamy w układzie pokazanym na rysunku 8.
Rys. 8. Schemat stanowiska do kontroli pęcherzowatości [9, s. 322]
Przy silnym oświetleniu badanej próbki szkła prostopadle do kierunku obserwacji na
ciemnym tle pęcherze i kamienie są widoczne jako świecące punkty. Ich wymiary ocenia się
przez porównanie z wzorcowymi pęcherzami o znanych wymiarach.
Norma przewiduje 8 kategorii pęcherzowatości w zaleŜności od wymiarów pęcherzy i 7
klas w zaleŜności od ich liczby w jednostce objętości masy szklanej.
Kategorię ustalamy na podstawie szóstego co do wielkości pęcherza. Klasę
pęcherzowatości określa się średnią ilością pęcherzy w 1 kg szkła z danego wytopu.
4.1.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1.
Jakimi przyrządami moŜna zmierzyć współczynnik załamania?
2.
Jak zbudowany jest goniometr?
3.
W jaki sposób mierzymy dyspersję średnią?
4.
W jaki sposób mierzymy współczynnik absorpcji?
5.
W jaki sposób mierzymy dwójłomność?
6.
W jaki sposób sprawdzamy pęcherzowatość?
7.
W jaki sposób sprawdzamy smuŜystość w szkle?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
12
4.1.3. Ćwiczenia
Ćwiczenie 1
Zmierz współczynnik załamania szkła za pomocą goniometru.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy lunety
autokolimacyjnej i kolimatora,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące pryzmatu załamującego
i współczynnika załamania światła,
3)
odczytać kąty najmniejszego odchylenia w dwóch połoŜeniach lunety δ
1
i δ
2
,
4)
obliczyć kąt najmniejszego odchylenia pryzmatu δ
min
,
5)
obliczyć kąt łamiący pryzmatu θ,
6)
obliczyć współczynnik załamania szkła n z jakiego jest wykonany pryzmat.
WyposaŜenie stanowiska pracy:
−
goniometr,
−
instrukcja obsługi goniometru,
−
pryzmat załamujący do pomiaru,
−
kalkulator.
Ćwiczenie 2
Wyznacz współczynnik załamania szkła za pomocą refraktometru Abbego.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy refraktometru
Abbego,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące współczynnika załamania
światła,
3)
wyznaczyć współczynnik załamania szkła wskazanej próbki.
WyposaŜenie stanowiska pracy:
−
refraktometr Abbego,
−
ciecz immersyjna,
−
instrukcja obsługi refraktometru Abbego,
−
próbka szkła.
Ćwiczenie 3
Sprawdź dwójłomność w bloku szkła, soczewce wykonanej ze szkła mineralnego
i organicznego, elemencie optycznym zamocowanym w oprawie.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące dwójłomności,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
13
2)
wyszukać w materiałach dydaktycznych informacje dotyczące polaryskopu,
3)
wyznaczyć i narysować napręŜenia we wskazanych próbkach,
4)
określić kategorię dwójłomności.
WyposaŜenie stanowiska pracy:
−
polaryskop,
−
instrukcja obsługi polaryskopu,
−
próbki do badań: blok szkła, soczewka ze szkła mineralnego, soczewka ze szkła
organicznego, elementy optyczne w oprawach,
−
normy.
Ćwiczenie 4
Skontroluj smuŜystość wskazanych próbek.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące sprawdzania smuŜystości
szkła,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące smug w materiałach
optycznych,
3)
skontrolować smuŜystość wskazanych próbek szkła.
4)
określić kategorię i klasę smuŜystości.
WyposaŜenie stanowiska pracy:
−
urządzenie do sprawdzania smuŜystości,
−
instrukcja obsługi urządzenia do sprawdzania smuŜystości,
−
próbki szkła,
−
normy.
Ćwiczenie 5
Sprawdź pęcherzowatość wskazanych próbek szkła.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pęcherzowatości
,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące stanowiska do kontroli
pęcherzowatości,
3)
sprawdzić wskazane próbki szkła,
4)
określić klasy i kategorie pęcherzowatości badanych próbek szkła.
WyposaŜenie stanowiska pracy:
−
układ do sprawdzania pęcherzowatości,
−
instrukcja obsługi urządzenia do sprawdzania pęcherzowatości,
−
próbki szkła,
−
normy.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
14
4.1.4. Sprawdzian postępów
Czy potrafisz:
Tak
Nie
1)
opisać budowę goniometru?
2)
opisać budowę refraktometru Abbego?
3)
określić dwójłomność?
4)
określić smuŜystość?
5)
określić pęcherzowatość?
6)
zdefiniować współczynnik absorpcji?
7)
sklasyfikować metody pomiaru współczynnika załamania szkła?
8)
dokonać pomiaru współczynnika załamania?
9)
dokonać pomiaru dyspersji?
10)
dokonać pomiaru dwójłomności?
11)
dokonać pomiaru współczynnika absorpcji?
12)
dokonać kontroli smuŜystości?
13)
dokonać kontroli pęcherzowatości?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
15
4.2.
Pomiary parametrów elementów optycznych
4.2.1.
Materiał nauczania
Pomiar płaszczyzn
W masowej produkcji jakość wykonania powierzchni płaskich o średnicy do 200 mm
sprawdzamy za pomocą szklanych sprawdzianów interferencyjnych. Nakładając sprawdzian
na badaną powierzchnię, obserwujemy prąŜki interferencyjne tworzące się w cienkiej
warstewce powietrza między stykającymi się powierzchniami szklanymi. Kształt i barwa
prąŜków pozwalają nam na ocenę jakości badanej powierzchni.
Do badania powierzchni płaskich uŜywamy interferometrów, których działanie opiera się
na porównaniu badanych powierzchni z powierzchniami wzorcowymi.
Rys. 9. Interferometr na płycie szklanej [2, s. 209]
Na rysunku 9 przedstawiono najprostszy typ interferometru. Na płycie szklanej
W posiadającej wzorcową powierzchnię górną kładziemy kawałeczki bibułki, a na nich
badaną płytkę B. Obie płytki oświetlamy za pomocą źródła światła monochromatycznego L,
przed którym znajduje się diafragma z okrągłym otworkiem. Promienie wychodzące
z okrągłego oświetlonego otworka diafragmy przechodzą przez płytkę płaskorównoległą P
nachyloną pod kątem 45° do powierzchni wzorcowej. Promienie odbite od dolnej powierzchni
badanej płytki i górnej wzorca interferują ze sobą, odbijają się od płytki P i kierują się do oka
obserwatora.
Wzorzec W powierzchni płaskiej wykonujemy z twardego szkła, dobrze odpręŜonego,
albo jeszcze lepiej z kwarcu.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
16
Rys. 10. Interferometr warsztatowy [2, s. 209]
Na rysunku 10 przedstawiono schematycznie typ interferometru warsztatowego, za
pomocą którego moŜemy obserwować prąŜki jednakowej grubości. Badaną płaszczyznę B
kładziemy na regulowanym trzema śrubami stoliku S. Stolik moŜe być podnoszony do góry
w kierunku wzorcowej powierzchni klinowego sprawdzianu W. Monochromatyczne światło
wychodzące z otworka oświetlonego lampą L przechodzi szklany sześcian K składający się
z dwóch sklejonych pryzmatów prostokątnych, z których jeden na swej ściance
przeciwprostokątnej ma nałoŜoną częściowo przezroczystą cienką warstwę srebra, aluminium
lub chromu.
PoniewaŜ źródło światła L znajduje się w płaszczyźnie ogniskowej obiektywu Ob, więc
na wzorzec W i płytkę badaną B padają pęki promieni równoległych, które po odbiciu skupią
się w punkcie A, w którym znajduje się źrenica oka obserwatora. Przez mały otworek A
obserwujemy powstałe między powierzchniami W i B prąŜki jednakowej grubości. PrąŜki te
będą . proste w tym przypadku, kiedy badana powierzchnia B stanowi płaszczyznę.
Zakrzywienie prąŜków, wyraŜone w ułamku odległości między prąŜkami charakteryzuje
kształt badanej powierzchni. Interpretacja prąŜków została omówiona w poradniku
„Charakteryzowanie elementów optycznych” – moduł Z1.01.
Sprawdzian W powinien być wykonany z największą, technicznie osiągalną
dokładnością, przy czym jego promień nie powinien być mniejszy niŜ 10 km.
W celu otrzymania prąŜków musimy między powierzchniami płytki wzorcowej i badanej
wytworzyć klin powietrzny o bardzo małym kącie łamiącym. W celu łatwego i szybkiego
otrzymania obrazu interferencyjnego naleŜy wyjąć oprawkę z otworkiem A i włoŜyć na jej
miejsce dodatni okular, który wraz z obiektywem Ob będzie stanowił lunetę typu Keplera.
Przez okular ten moŜemy obserwować powstałe w płaszczyźnie ogniskowej obiektywu,
autokolimacyjne obrazy otworka L znajdującego się takŜe w płaszczyźnie ogniskowej
obiektywu Ob. Działając śrubami stolika interferometru doprowadzamy do pokrycia się ze
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
17
sobą autokolimacyjnych obrazów otworka L utworzonych na skutek odbicia się promieni od
dolnej powierzchni wzorca i górnej płytki badanej.
Po wykonaniu tej operacji powierzchnia sprawdzana i wzorcowa są juŜ prawie
równoległe i wtedy mały ruch jednej ze śrub regulacyjnych stolika wystarcza do wytworzenia
klina powietrznego, w którym powstaną prąŜki równoległe do jego krawędzi łamiącej.
W klinie przekroje o jednakowej grubości są równoległe do krawędzi kąta łamiącego. Przez
zmniejszenie kąta łamiącego klina powietrznego za pomocą śrub stolika moŜemy
„rozciągnąć” prąŜki interferencyjne jednakowej grubości, co polepszy nam warunki pomiaru.
NaleŜy podkreślić, Ŝe otworek oświetlający powinien mieć większą średnicę niŜ otworek
A. Obraz interferencyjny jest najbardziej kontrastowy, gdy otworek A „wycina” wspólne pole
obrazów otworka oświetlającego, utworzonych przez powierzchnie wzorcową i badaną.
Rys. 11. Interferometr do sprawdzania płaszczyzn [2, s. 212]
Do sprawdzania bardzo dokładnie wykonanych płaskich powierzchni optycznych
wykorzystuje się zjawisko tzw. wielopromieniowej interferencji, w którym biorą udział
promienie wielokrotnie odbite od powierzchni płytki płaskorównoległej i przy której
otrzymuje się większą, niŜ w interferencji dwupromieniowej, kontrastowość prąŜków.
Na rys. 11a przedstawiono schemat optyczny interferometru do sprawdzania płaszczyzn,
za pomocą którego moŜna osiągnąć dokładność sprawdzenia równą 0,01 szerokości prąŜka.
Lampa rtęciowa oświetla niewielki otwór diafragmy D. Światło po odbiciu od zwierciadła
R przechodzi przez badane płytki szklane S, i S
2
. Płytki są do siebie zwrócone sprawdzanymi
powierzchniami, które dla wyrównania natęŜeń promieni odbitych i przechodzących, są
pokryte częściowo przepuszczającymi warstwami zwierciadlanymi, najczęściej srebra ze
względu na małą absorpcję.
Między sprawdzanymi powierzchniami umieszcza się trzy małe przekładki z folii
o grubości równej około 0,01 mm.
Interferencja promieni odbywa się w warstewce powietrza między sprawdzanymi
powierzchniami.
Promień padający na sprawdzane płytki ulega po wielokrotnych odbiciach rozdzieleniu na
duŜą ilość promieni prawie równolegle wychodzących z płytki S
2
, które ze sobą interferują.
PoniewaŜ prąŜki interferencyjne są wystarczająco pstre zarówno w warstewce powietrza
między powierzchniami sprawdzanymi jak i w pewnej odległości od niej, więc moŜemy obraz
ich uzyskać na płycie fotograficznej B. PrąŜki interferencyjne są widoczne w postaci cienkich,
ciemnych linii, dzięki czemu moŜemy osiągnąć bardzo wysoką dokładność oceny ich
zniekształceń.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
18
Na rys. 11b przedstawiono przykładowy widok układu prąŜków. Ze względu na duŜą
dokładność opisanej metody naleŜy zwracać uwagę, aŜeby nałoŜona warstwa odbijająca była
jednakowej grubości i Ŝeby nie zniekształcała sprawdzanej powierzchni. Warstwy takie
moŜemy uzyskać drogą naparowania w aparaturze próŜniowej. W celu zapewnienia
równoległości promieni pęków padających na sprawdzane płytki umieszcza się diafragmę L
w odległości 2–3 m od nich.
Badanie płaszczyzn za pomocą kolimatora i lunety
Bardzo często w celu określenia dokładności wykonania płaszczyzny lub całego pryzmatu
podaje się na rysunkach dopuszczalną wartość astygmatycznej róŜnicy pęku po odbiciu od
badanej powierzchni albo teŜ po przejściu przez sprawdzany pryzmat lub płytkę płasko-
równoległą.
Rys. 12. Schemat układu do sprawdzania płaszczyzn [2, s. 213]
W celu pomiaru astygmatycznej róŜnicy powierzchni odbijającej płytki tub pryzmatu
uŜywamy przyrządu przedstawionego schematycznie na rys. 12. Badany element optyczny
ustawiamy na stoliku S przyrządu, którego oś obrotu jest jednocześnie osią obrotu lunety L.
W płaszczyźnie ogniskowej obiektywu kolimatora K jest umieszczony test zdolności
rozdzielczej.
Luneta L przyrządu posiada przesuwny okular z krzyŜem naniesionym na płytce
ogniskowej. Na oprawie okulara znajduje się podziałka, a na rurce prowadzącej lunety
noniusz, za pomocą którego mierzymy przesuw wzdłuŜny okulara.
Sprawdzany element optyczny (płytkę, pryzmat) orientujemy względem kolimatora
w takim połoŜeniu, w jakim pracuje w przyrządzie. W przypadku badania płaskiej
powierzchni ustawiamy ją pod moŜliwie duŜym kątem do osi kolimatora.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
19
Lunetę przyrządu obracamy do chwili zobaczenia obrazu testu kolimatora, utworzonego
przez badany element. JeŜeli płaszczyzna lub badany element optyczny nie jest wykonany
idealnie, to pojawi się astygmatyzm. Aby zobaczyć ostro w płaszczyźnie krzyŜa okulara
lunety poziome, a następnie pionowe kreski testu, naleŜy przesunąć okular o pewną wielkość.
Wielkość tę moŜemy wyrazić w dioptriach okularowych lunety, pamiętając, Ŝe jednej dioptrii
odpowiada poosiowo. Powiększenie lunety powinno być odpowiednio dobrane, tak abyśmy
mogli rozpatrywać test o kącie między kreskami nie większym niŜ obliczony ze wzoru:
2
"'
1000
1
ok
D
f
′
⋅
=
∆
gdzie:
f´
2
ok
stanowi ogniskową okulara wyraŜoną w milimetrach.
Kolimator przyrządu powinien mieć obiektyw o długości ogniskowej od 600 do 1000 mm
oraz lunetę o tej samej długości ogniskowej i otworze obiektywu.
Powiększenie lunety powinno być tak dobrane, aby spełniało warunek:
0
12
0
6
0
14
′′
÷
′′
≥
⋅
′′
G
D
k
gdzie:
D
k
– średnica czynna obiektywu kolimatora K i lunety L w milimetrach,
G – powiększenie lunety.
Doświadczony obserwator wyczuwa róŜnicę ustawienia krzyŜa okulara i obrazu testu
wynoszącą 0,1 ± 0,25 dioptrii i błąd ten przy duŜym powiększeniu lunety jest bez
praktycznego znaczenia.
Sprawdzenie płaszczyzny – jakkolwiek mniej dokładne – moŜna wykonać za pomocą
lunety autokolimacyjnej ustawionej prostopadle do badanego elementu optycznego.
W przypadku gdy badana płaszczyzna jest wykonana nieprawidłowo (powierzchnia kulista),
autokolimacyjny obraz krzyŜa nie będzie widziany ostro w płaszczyźnie krzyŜa płytki
ogniskowej lunety. Jeśli powierzchnia ma inne krzywizny w dwóch wzajemnie prostopadłych
przekrojach, to pojawi się astygmatyzm i obraz pionowego oraz poziomego ramienia krzyŜa
nie będzie jednakowo ostry. Przesunięcie poosiowe okulara wraz z płytką ogniskową (lub
obiektywu) konieczne do oglądania raz poziomej, drugi raz pionowej kreski auto-
kolimacyjnego obrazu krzyŜa lunety będzie odpowiadało astygmatycznej róŜnicy ∆T".
Jeśli luneta autokolimacyjna ma dwie płytki ogniskowe, to w kolimatorowej jej części
moŜemy wstawić test zdolności rozdzielczej, otrzymując odpowiednik kolimatora i lunety.
Metoda ta jest mniej dokładna niŜ omówiona poprzednio, gdyŜ pęki promieni wychodzące
z lunety autokolimacyjnej, padają prostopadle lub prawie prostopadle do powierzchni badanej.
Natomiast wszystkie błędy wykonania powierzchni tym bardziej się uwypuklają, im większy
jest kąt padania promieni na powierzchnię.
Pomiar promienia krzywizny
Promień krzywizny moŜemy zmierzyć:
1.
szklanym sprawdzianem interferencyjnym,
2.
interferometrem,
3.
bardzo duŜe promienie metodą interferencyjną,
4.
średniej wielkości promienie sferometrem pierścieniowym,
5.
mikroskopem autokolimacyjnym,
6.
sferometrem czujnikowym.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
20
Dwie pierwsze metody zostały dokładnie opisane w pakiecie charakteryzowanie
elementów optycznych w (731[04].Z1.01) w punkcie 4.5.
Bardzo duŜe promienie mierzymy metodą interferencyjną. Badaną powierzchnię
sferyczną kładziemy na sprawdzianie płaskim i mikroskopem pomiarowym mierzymy
średnicę d
N
N-tego pierścienia Newtona oraz d
M
M-tego pierścienia, a promień wyliczamy wg
wzoru
(
)
M
N
d
d
r
M
N
−
⋅
−
=
λ
4
2
2
Promienie średniej wielkości (50÷1000 mm) najczęściej uŜywa się sferometrów
pierścieniowych.
Rys. 13. Sferometr pierścieniowy [9, s. 325]
W tulei prowadzącej porusza się trzpień z kulką, który pod działaniem obciąŜnika
podnosi się ku górze. Na trzpieniu znajduje się podziałka, którą obserwujemy przez
mikroskop pomiarowy zapewniający dokładność odczytu do 0,001 mm. Na gniazdo osadcze
znajdujące się na górze przyrządu, współśrodkowo względem osi trzpienia, moŜemy nakładać
pierścienie o róŜnych średnicach dokładnie pomierzonych.
Pomiar polega na wyznaczeniu strzałki h czaszy kulistej poprzez odczyty połoŜenia
trzpienia pomiarowego przy nałoŜonym sprawdzianie płaskim oraz po nałoŜeniu badanej
powierzchni. RóŜnica obu odczytów jest równa strzałce h badanej sfery, a szukany promień
wyznaczamy wg wzoru
2
8
2
h
h
d
r
+
=
Gdzie h – strzałka zmierzona na pierścieniu o średnicy d.
Pomiar promienia za pomocą mikroskopu autokolimacyjnego opiera się na
własnościach tego mikroskopu, który tworzy ostre obrazy autokolimacyjne, gdy
w płaszczyźnie przedmiotowej znajdzie się powierzchnia odbijająca lub jej środek krzywizny.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
21
Rys. 14. Mikroskop autokolimacyjny [9, s. 270]
Wystarczy znać połoŜenia mikroskopu lub badanej powierzchni, aby z róŜnicy odczytów
połoŜeń, w których tworzą się ostre obrazy autokolimacyjne, otrzymać wartość promienia.
Takie pomiary dokonujemy na ławie optycznej osiągając dokładność pomiaru 1 µm.
Sferometr czujnikowy słuŜy do szybkiego pomiaru promienia przewaŜnie szkieł
okularowych.
Rys. 15. Sferometr czujnikowy [2, s. 168]
Jest to czujnik zegarowy zaopatrzony w dwie nieruchome nóŜki, których zakończenia
znajdują się na jednej linii z przesuwnym trzpieniem mierniczym, w odległości 10–15 mm.
Zerowe połoŜenie trzpienia sprawdza się na płaskiej powierzchni. Przy pomiarze naleŜy
zwracać uwagę, aby obie nóŜki i trzpień stykały się z mierzoną powierzchnią wzdłuŜ okręgu
wielkiego koła. Odczyty otrzymujemy na okrągłej skali, która jest wycechowana bezpośrednio
w dioptriach.
Pomiar kątów.
Jedną z najprostszych metod kontroli kątów jest sprawdzanie wg prześwitu powstającego
przy nałoŜeniu szklanego kątownika na ściany kąta mierzonego. Podczas sprawdzania naleŜy
uwaŜać, aby ramiona kątownika były prostopadłe do krawędzi sprawdzanego kąta
dwuściennego. Praktyczna dokładność pomiaru wynosi 1’÷2’.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
22
Rys. 16. Kątowniki szklane do sprawdzania pryzmatów polerowanych: a) o kącie prostym,
b) o kącie ostrym [2, s. 230]
Polerowane pryzmaty sprawdzamy szklanymi sprawdzianami interferencyjnymi
wykonanymi w postaci pryzmatu o kącie dopełniającym sprawdzany kąt do 180°. Pryzmat
taki jest przyspojony na kontakt optyczny do płaskiego sprawdzianu.
Do kontroli kątów pryzmatów uŜywa się często czujniki oraz mechaniczne kątomierze
czujnikowe.
Rys. 17. Czujnik do sprawdzania kątów [2, s. 231]
.
Podziałka w tych czujnikach jest wyskalowana w minutach, a błąd pomiaru wynosi 1’÷2’.
Kąty dwuścienne w pryzmatach moŜemy równieŜ pomierzyć za pomocą goniometru.
Opis działania goniometru jest opisany w punkcie 4.1.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
23
Rys. 18. Pomiar kąta za pomocą goniometru [2, s. 233]
Sposób pomiaru kąta na goniometrze:
–
ustawiamy mierzony pryzmat na stoliku goniometru,
–
justujemy pryzmat trzema śrubami regulacyjnymi stolika do momentu, aŜ do momentu,
gdy utworzony przez lunetę autokolimacyjną obraz poziomej kreski krzyŜa pokrywa się
z poziomą kreską lunety,
–
obracamy stolik lub lunetę do chwili, gdy autokolimacyjny obraz od pierwszej ściany
pryzmatu pokryje się z krzyŜem lunety,
–
następnie obracamy stolik lub lunetę do momentu pokrycia się obrazu autokolimacyjnego
od drugiej ściany pryzmatu z krzyŜem lunety,
–
róŜnica odczytów σ na kręgu obu połoŜeń lunety lub stolika daje nam dopełnienie kąta φ
do kąta półpełnego.
σ
ϕ
−
=
0
180
Pomiar ogniskowych
Odległość ogniskową czołową (odległość od ogniska do ostatniej powierzchni soczewki)
mierzymy na ławie optycznej w układzie pokazanym na rysunku nr 19.
Rys. 19. Pomiar ogniskowej czołowej [9, s. 333]
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
24
Przesuwamy mikroskop do soczewki tak, aby w płaszczyźnie krzyŜa okulara mikroskopu
była ostro widoczna powierzchnia soczewki (np.: pyłki lub znaki wykonane miękkim
ołówkiem na tylnej powierzchni soczewki). Następnie odsuwamy mikroskop aŜ do uzyskania
w płaszczyźnie krzyŜa okulara ostrego obrazu krzyŜa kolimatora. Długość przesunięcia
mikroskopu mierzona na podziałce ławy, jest odległością ogniskową czołową s
F
’.
Ogniskową a tym samym moc soczewki
f
′
=
1
ϕ
układu optycznego lub soczewki mierzymy
w układzie kolimator, badana soczewka, mikroskop pomiarowy jak na rysunku nr 20.
Rys. 20. Pomiar ogniskowych [9, s. 334]
Pomiar polega na wyznaczeniu odległości y’ obrazów kresek kolimatora. Pomiaru
moŜemy dokonać naprowadzając kolejno obrazy kresek kolimatora na środek krzyŜa
mikroskopu pomiarowego poprzez poprzeczny przesuw mikroskopu lub badanego układu
optycznego. Odległości mierzymy za pomocą urządzenia odczytowego z dokładnością
±0,002 mm.
Ogniskową wyznaczamy ze wzoru
y
k
f
′
⋅
=
gdzie:
f – ogniskowa badanego układu,
k – stała kolimatora,
y’ – odległość obrazów kresek kolimatora utworzonych przez badany układ.
Sprawdzenie centralności soczewek i klinowatości płytek
W prawidłowo wykonanej soczewce oś optyczna powinna pokrywać się z osią
mechaniczną; w przeciwnym razie występuje błąd zwany niecentrycznością soczewki.
Niecentryczność (niecentralność, nieśrodkowość) mierzymy w świetle przechodzącym
(moŜna równieŜ mierzyć w świetle odbitym) w układzie kolimator, mierzona soczewka,
mikroskop jak na rysunku 21.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
25
Rys. 21. Pomiar centralności soczewek [9, s. 337]
Przy obrocie badanej soczewki wokół jej osi mechanicznej obraz krzyŜa kolimatora,
utworzony w ognisku obrazowym tej soczewki, zatacza koło o promieniu, który jest miarą
niecentryczności.
Klinowatość płytek (kat łamiący θ klina) najczęściej sprawdzamy za pomocą lunety
autokolimacyjnej. Zasada pomiaru omówiona jest w pakiecie modułu Z1.02. w punkcie 4.4.
Znając kąt łamiący klina moŜna obliczyć kat odchylenia δ ze wzoru
( )
θ
δ
⋅
−
=
1
n
. Warunkiem
stosowania tej metody jest znajomość współczynnika załamania n szkła z jakiego wykonany
jest klin.
Bezpośrednio kąt odchylenia klina wyznaczamy w układzie kolimator – luneta
z podziałką kątową rysunek 22.
Rys. 22. Pomiar kata odchylenia klina [9, s. 337]
Na początku pomiaru ustawiamy lunetę tak, aby obraz krzyŜa kolimatora pokrył się
z zerową kreską podziałki kątowej lunety. Wstawiamy badany kliniak na rysunku 22. Teraz
obraz krzyŜa przesunie się w polu widzenia lunety o wartość kątową odpowiadającą kątowi
odchylenia klina.
Sprawdzanie wymiarów liniowych i kątowych
–
Wymiary liniowe jak grubość i średnica soczewki, boki pryzmatów mierzymy
uniwersalnymi narzędziami do pomiaru długości jak: suwmiarka, mikrometr, czujnik,
mikroskopy pomiarowe.
–
Fazy na elementach optycznych mierzymy za pomocą lup pomiarowych.
–
Bezwzględne pomiary kątów mierzymy za pomocą goniometrów.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
26
–
W praktyce warsztatowej kąty najczęściej mierzymy metodami porównawczymi
z wykorzystaniem lunet autokolimacyjnych. W metodzie tej najpierw wykonuje się
pryzmat wzorcowy mierzony za pomocą goniometru. Za pomocą pryzmatu wzorcowego
ustawiamy lunetę autokolimacyjną na zero jak na rysunku 23. Za pomocą lunety
autokolimacyjnej mierzymy odchyłki kątowe względem pryzmatu wzorcowego.
Rys. 23. Pomiar odchyłek kątowych z uŜyciem lunety autokolimacyjnej
[9, s. 338]
4.2.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1.
W jaki sposób moŜna dokonać sprawdzenia powierzchni płaskich?
2.
W jaki sposób moŜna dokonać pomiaru promienia krzywizny?
3.
W jaki sposób moŜna pomierzyć ogniskową?
4.
Jak moŜemy sprawdzić centralność soczewki?
5.
Jak moŜemy sprawdzić klinowatość płytek?
6.
Jakimi przyrządami moŜemy pomierzyć wymiary liniowe elementów optycznych?
7.
W jaki sposób moŜemy dokonać pomiarów kątów w pryzmatach?
8.
Jak zbudowany jest przyrząd do pomiaru odchyłek kątowych w pryzmatach?
4.2.3. Ćwiczenia
Ćwiczenie 1
Oblicz promień krzywizny mierzony na sferometrze wiedząc, Ŝe strzałka powierzchni
sferycznej wynosi 0,5 mm na średnicy pierścienia 35 mm.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru promienia za
pomocą sferometru,
2)
odszukać wzór na obliczanie promienia,
3)
obliczyć promień krzywizny.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
27
WyposaŜenie stanowiska pracy:
−
kalkulator.
Ćwiczenie 2
Wyznacz promień soczewki dodatniej, ujemnej i zwierciadła wklęsłego za pomocą
sferometru.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru promienia za
pomocą sferometru,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy sferometru,
3)
dobrać pierścienie pomiarowe do średnicy soczewek i zwierciadła,
4)
umieścić płytkę wzorcową na pierścieniu pomiarowym,
5)
dokonać zerowego odczytu połoŜenia trzpienia pomiarowego,
6)
umieścić mierzony element na pierścieniu pomiarowym i dokonać odczytu połoŜenia
trzpienia pomiarowego,
7)
wyznaczyć strzałkę ugięcia,
8)
wyliczyć promień krzywizny badanych elementów.
WyposaŜenie stanowiska pracy:
−
sferometr,
−
instrukcja obsługi sferometru,
−
komplet pierścieni pomiarowych,
−
płytka wzorcowa,
−
soczewka dodatnia, ujemna i zwierciadło wklęsłe do pomiaru.
Ćwiczenie 3
Wyznacz promień zwierciadła wklęsłego za pomocą mikroskopu autokolimacyjnego na
ławie optycznej.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru promienia za
pomocą mikroskopu autokolimacyjnego,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy mikroskopu
autokolimacyjnego,
3)
zapoznać się z budową ławy optycznej,
4)
umieścić zwierciadło na ławie optycznej przed mikroskopem autokolimacyjnym,
5)
odszukać takie połoŜenie mikroskopu, w którym uzyskamy ostry obraz autokolimacyjny
krzyŜa gdy powierzchnia odbijająca leŜy w płaszczyźnie przedmiotowej mikroskopu,
6)
dokonać odczytu na ławie optycznej połoŜenia mikroskopu,
7)
odszukać takie połoŜenie mikroskopu, w którym uzyskamy ostry obraz autokolimacyjny
krzyŜa gdy środek krzywizny powierzchni odbijającej leŜy w płaszczyźnie,
przedmiotowej mikroskopu,
8)
dokonać odczytu na ławie optycznej połoŜenia mikroskopu,
9)
wyliczyć promień krzywizny badanych elementów.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
28
WyposaŜenie stanowiska pracy:
−
ława optyczna,
−
mikroskop autokolimacyjny,
−
instrukcja obsługi ławy optycznej i mikroskopu autokolimacyjnego,
−
zwierciadło wklęsłe do pomiaru.
Ćwiczenie 4
Wyznacz ogniskową czołową soczewki dodatniej na ławie optycznej.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru ogniskowych
czołowych,
2)
zapoznać się z budową ławy optycznej,
3)
zapoznać się z budową kolimatora,
4)
umieścić soczewkę mierzoną na ławie optycznej pomiędzy kolimatorem i mikroskopem,
5)
odszukać takie połoŜenie mikroskopu, w którym uzyskamy ostry obraz powierzchni
soczewki mierzonej,
6)
dokonać odczytu na ławie optycznej połoŜenia mikroskopu,
7)
odszukać takie połoŜenie mikroskopu, w którym uzyskamy ostry obraz w płaszczyźnie
krzyŜa okulara ostrego obrazu krzyŜa kolimatora,
8)
dokonać odczytu na ławie optycznej połoŜenia mikroskopu,
9)
wyliczyć ogniskową badanej soczewki.
WyposaŜenie stanowiska pracy:
−
ława optyczna,
−
mikroskop,
−
kolimator,
−
instrukcja obsługi ławy optycznej i mikroskopu,
−
soczewka dodatnia do pomiaru,
Ćwiczenie 5
Wyznacz kąt łamiący w pryzmacie załamującym.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru kątów
w pryzmatach,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy i zasady działania
goniometru,
3)
zapoznać się z budową goniometru,
4)
umieścić mierzony pryzmat na stoliku goniometru pomiędzy kolimatorem i lunetą
autokolimacyjną,
5)
wyjustować pryzmat śrubami regulacyjnymi stolika,
6)
unieruchamiamy stolik,
7)
odszukać takie połoŜenie lunety autokolimacyjnej, w którym autokolimacyjny obraz od
pierwszej ściany pryzmatu pokryje się z krzyŜem lunety,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
29
8)
dokonać odczytu połoŜenia lunety,
9)
obrócić lunetę autokolimacyjną do drugiej powierzchni pryzmatu,
10)
odszukać takie połoŜenie lunety autokolimacyjnej, w którym autokolimacyjny obraz od
drugiej ściany pryzmatu pokryje się z krzyŜem lunety,
11)
dokonać odczytu połoŜenia lunety,
12)
wyliczyć kat łamiący pryzmatu.
WyposaŜenie stanowiska pracy:
−
goniometr,
−
instrukcja obsługi goniometru,
−
pryzmat załamujący.
Ćwiczenie 6
Dokonaj pomiaru średnicy, grubości i faz w soczewce dodatniej i ujemnej.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru wymiarów
liniowych,
2)
dobrać po dwa przyrządy pomiarowe do kaŜdego pomiaru,
3)
dokonać pomiaru średnicy soczewek,
4)
dokonać pomiaru grubości soczewek,
5)
dokonać pomiaru faz w soczewkach.
WyposaŜenie stanowiska pracy:
−
uniwersalne przyrządy pomiarowe do pomiaru wymiarów zewnętrznych,
−
lupy pomiarowe,
−
soczewka dodatnia i ujemna.
Ćwiczenie 7
Dokonaj pomiaru klinowatości płytki ogniskowej.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące pomiaru płaskości
i klinowatości płytek,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące płytek płaskorównoległych
i klinów optycznych,
3)
wyszukać w materiałach dydaktycznych informacje dotyczące lunet pomiarowych
i kolimatorów,
4)
ustawić lunetę na zerową kreskę podziałki kątowej lunety,
5)
umieścić mierzoną płytkę ogniskową na ławie optycznej pomiędzy kolimatorem i lunetą,
6)
dokonać odczytu wartości kąta odchylenia płytki,
7)
wyliczyć kąt łamiący badanej płytki.
WyposaŜenie stanowiska pracy:
−
ława optyczna,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
30
−
luneta autokolimacyjna,
−
kolimator,
−
instrukcja obsługi ławy optycznej i lunety,
−
płytka ogniskowa do pomiaru.
Ćwiczenie 8
Sprawdź jakość powierzchni płytki płaskorównoległej za pomocą szklanego sprawdzianu
interferencyjnego.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące interferencji, prąŜków
Newtona i szklanych sprawdzianów interferencyjnych,
2)
umyć dokładnie sprawdzane elementy,
3)
nałoŜyć sprawdzian interferencyjny na badany element,
4)
sprawdzić wygląd prąŜków interferencyjnych,
5)
określić N i ∆N dla badanych elementów,
6)
sporządź notatkę z wykonanego zadania.
WyposaŜenie stanowiska pracy:
−
szklane sprawdziany interferencyjne płaskie,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
−
pędzelki do odpylenia,
−
lampa sodowa,
−
płytki płaskorównoległe,
−
arkusz spostrzeŜeń.
Ćwiczenie 9
Sprawdź jakość powierzchni soczewki ujemnej za pomocą szklanego sprawdzianu
interferencyjnego.
Sposób wykonania ćwiczenia:
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące interferencji, prąŜków
Newtona i szklanych sprawdzianów interferencyjnych,
2)
umyć dokładnie sprawdzane elementy,
3)
nałoŜyć sprawdzian interferencyjny na badany element,
4)
sprawdzić wygląd prąŜków interferencyjnych,
5)
określić N i ∆N dla badanych elementów,
6)
sporządź notatkę z wykonanego zadania.
WyposaŜenie stanowiska pracy:
−
szklane sprawdziany interferencyjne sferyczne wypukłe,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
31
−
pędzelki do odpylenia,
−
lampa sodowa,
−
płytki soczewki wklęsłe do pomiaru.
−
arkusz spostrzeŜeń.
Ćwiczenie 10
Sprawdź jakość powierzchni otrzymanych płytek płaskorównoległych za pomocą
interferometru warsztatowego.
Sposób wykonania ćwiczenia:
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące interferencji, prąŜków
Newtona i interferometrów,
2)
umyć dokładnie sprawdzane elementy,
3)
zapoznać się z obsługą interferometru,
4)
ustawić interferometr do pomiaru za pomocą płytki wzorcowej,
5)
wstaw płytki do pomiaru,
6)
sprawdzić wygląd prąŜków interferencyjnych,
7)
określić N i ∆N dla badanych elementów,
8)
sporządź notatkę z wykonanego zadania.
WyposaŜenie stanowiska pracy:
−
interferometr warsztatowy,
−
płytka wzorcowa,
−
instrukcja obsługi interferometru,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
−
pędzelki do odpylenia,
−
płytki płaskorównoległe do kontroli,
−
arkusz spostrzeŜeń.
Ćwiczenie 11
Sprawdź jakość powierzchni otrzymanych płytek płaskorównoległych za pomocą
kolimatora i lunety.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące interferencji, prąŜków
Newtona i interferometrów,
2)
wyszukać w materiałach dydaktycznych informacje dotyczące budowy kolimatorów
i lunet pomiarowych,
3)
odczytać schemat układ pomiarowego,
4)
dobrać i przygotować przyrządy kontrolne do pomiaru,
5)
zestawić układ pomiarowy,
6)
umyć dokładnie sprawdzane elementy,
7)
wstaw płytki do pomiaru,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
32
8)
dokonaj badania płaskości otrzymanych płytek,
9)
sporządź notatkę z wykonanego zadania.
WyposaŜenie stanowiska pracy:
−
kolimator,
−
luneta pomiarowa,
−
ława optyczna,
−
schemat układu pomiarowego,
−
instrukcja wykonania badania powierzchni płytek,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
−
pędzelki do odpylenia,
−
płytki płaskorównoległe do kontroli,
−
arkusz spostrzeŜeń.
4.2.4. Sprawdzian postępów
Czy potrafisz:
Tak
Nie
1)
omówić budowę goniometru?
2)
określić zastosowanie ławy optycznej?
3)
określić zastosowanie szklanych sprawdzianów interferencyjnych?
4)
rozróŜnić
przyrządy
pomiarowe
do
pomiarów
parametrów
geometrycznych elementów optycznych?
5)
scharakteryzować
zastosowanie
lunety
autokolimacyjnej
do
pomiarów parametrów elementów optycznych?
6)
scharakteryzować
zastosowanie
kolimatorów
do
pomiarów
parametrów elementów optycznych?
7)
scharakteryzować zastosowanie mikroskopów pomiarowych do
pomiarów parametrów elementów optycznych?
8)
dokonać pomiaru kąta?
9)
dokonać pomiaru promienia?
10)
sprawdzić powierzchnię płaską?
11)
dokonać pomiaru ogniskowych?
12)
sprawdzić klinowość płytki?
13)
dokonać pomiarów liniowych elementów optycznych?
14)
obsłuŜyć interferometr warsztatowy?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
33
4.3. Czystość optyczna
4.3.1. Materiał nauczania
Czystość powierzchni elementów optycznych charakteryzuje się ilością i rozmiarami skaz
występujących na tej powierzchni. Jako skazy uwaŜa się rysy i punkty (przeszlifowane
pęcherze, wykłucia, plamki, szczerby, nadtrawienia i inne mające charakter punków). Dotyczy
ona tylko obszarów czynnych – tej części powierzchni przez którą przechodzą lub się odbijają
promienie świetlne.
Jeśli:
–
obszar czynny jest kołem – to jego średnicę nazywamy średnicą czynną,
–
obszar czynny nie jest kołem, to jako średnicę czynną rozumie się średnicę koła
wpisanego w ten obszar.
Obszar czynny dzielimy na strefy:
–
centralną – powierzchnia ograniczona okręgiem o średnicy nie większej niŜ 1/3 średnicy
czynnej,
–
środkową – powierzchnia ograniczona okręgiem o średnicy nie większej niŜ 2/3 średnicy
czynnej,
–
brzegową – pozostała część obszaru czynnego.
W zaleŜności od liczby i rozmiarów wad występujących na powierzchni czynnej polska
norma określa klasy czystości i metody ich sprawdzania.
Fragmenty normy dotyczącej klas czystości
Przy badaniu elementów I klasy czystości do oględzin naleŜy uŜywać lupy
o powiększeniu, pod jakim element pracuje, lecz nie mniejszym niŜ 6
x
.
Przy badaniu elementów w klasie PI-0S przeglądanie powinno odbywać się przy uŜyciu
mikroskopu o powiększeniu ≥10
x
, w ciemnym polu, w świetle odbitym pod katem 45°.
Przy badaniu elementów w klasach PI-10S do PI-40S przeglądanie powinno odbywać się
przy uŜyciu mikroskopu o powiększeniu ≤ 10
x
.
Tabela 1. Dopuszczalne skazy powierzchni w klasie I [opracowanie własne]
Strefa środkowa
Strefa brzegowa
Strefa centralna
punkty
rysy
Punkty
rysy
liczba
liczba
K
la
sy
c
zy
st
o
śc
i
Ś
re
d
n
ic
a
w
m
m
D
o
4
0
P
o
n
ad
4
0
S
ze
ro
k
o
ść
w
m
m
Ł
ąc
zn
a
d
łu
g
o
ść
w
m
m
Ś
re
d
n
ic
a
w
m
m
D
o
4
0
P
o
n
ad
4
0
S
ze
ro
k
o
ść
w
m
m
Ł
ąc
zn
a
d
łu
g
o
ść
w
m
m
Zagęszczenie wad
PI-0 Wymiary wad, ich liczbę w strefach i wymiary stref ustala się na
rysunku części
PI-
10
0,004
4
6
0,002
0,2D 0,006
8 12
0,002
0,4D
PI-
20
0,010
4
6
0,004
0,2D 0,015
8 12
0,004
0,4D
PI-
40
0,015
4
6
0,008
0,2D 0,025
8 12
0,008
0,4D
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
34
PI-
0S
Wymiary wad, ich liczbę w strefach i wymiary stref ustala się na
rysunku części
Niedopuszczalne
są defekty
widoczne
w warunkach
kontroli
PI-
10S
0,004
4
6
0,002
0,2D 0,006
8 12
0,002
0,4D
PI-
20S
0,010
4
6
0,004
0,2D 0,015
8 12
0,004
0,4D
PI-
40S
0,015
4
6
0,008
0,2D 0,025
8 12
0,008
0,4D
Nie więcej niŜ 1
punkt oraz mniej
niŜ 10 rys o łącznej
długości mniejszej
od 0,1 D; pozostałe
wymagania określa
konstruktor na
rysunku
technicznym
KLASY CZYSTOŚCI P II - P VII
Punkty powstają w skutek przeszlifowania pęcherzy powietrznych znajdujących się
w szkle lub są pozostałością głębokich kraterów utworzonych na powierzchni szkła przez
pojedyncze grube ziarna proszku ściernego.
Rysy mogą być pozostałościami po poprzednim szlifowaniu lub teŜ uszkodzeniami
powierzchni powstałymi w czasie polerowania, wskutek zanieczyszczenia proszku do
polerowania, uŜycia zbyt twardej smoły, niedostatecznej wilgotności polerowanej
powierzchni.
Dla klasy P II skazy wykrywa się w świetle odbitym na tle czarnego ekranu (Ŝarówka
o mocy 40–60 W).
Dla klasy P III – P VIII skazy wykrywa się w świetle przechodzącym na tle równomiernie
oświetlonej matówki (Ŝarówka o mocy 40–60 W osłonięta matową szybą. Odległość szyby od
włókna Ŝarówki wynosi 100 mm, a od matówki do sprawdzanego materiału ok. 150 mm).
Tabela 2. Dopuszczalne skazy powierzchni w klasach II–VII [opracowanie własne]
punkty
duŜe punkty
łączna liczba w zaleŜności od średnicy
czynnej D w mm
Klasa
czystości średnica
w mm
do 15
16–25
pow. 25
ilość
maks. 25% liczby punktów
o średnicy większej
niŜ
P II
0,002–0,06
0,5 D
0,75 D
1,0 D
P III
0,004–0,1
0,8 D
1,2 D
1,6 D
0,06 mm
P IV
0,015–0,3
0,8 D
1,2 D
1,6 D
0,1 mm
P V
0,015–0,6
1,0 D
1,5 D
2,0 D
0,3 mm
P VI
0,015–1,0
1,0 D
1,5 D
2,0 D
0,6 mm
P VII
0,3–2,0
1,0 D
1,5 D
2,0 D
1,0 mm
Punktów o średnicy mniejszej niŜ podana w tabelce nie bierze się pod uwagę, jeŜeli nie
mają charakteru skupisk (niedopolerowania).
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
35
Tabela 3. Dopuszczalne skazy (rysy) powierzchni w klasie II–VII [opracowanie własne]
rysy
duŜe rysy
łączna długość zaleŜności od
średnicy czynnej D w mm
Klasa
czystości szerokość
w mm
do 15
16–25
pow. 25
sumaryczna długość
maksymalnie 25% łącznej
dopuszczalnej długości o
szerokości większej niŜ
P II
0,001–0,004 0,5 D
1,0 D
2,0 D
P III
0,002–0,006 0,5 D
1,0 D
2,0 D
0,004–0,006 mm
P IV
0,004–0,01
0,5 D
1,0 D
2,0 D
0,008–0,01 mm
P V
0,006–0,03
0,7 D
1,5 D
3,0 D
0,02–0,03 mm
P VI
0,006–0,05
0,75 D
1,5 D
3,0 D
0,03–0,05 mm
P VII
0,01–0,1
0,75 D
1,5 D
3,0 D
0,05–0,1 mm
Rysy o szerokości mniejszej od dolnej granicy nie bierze się pod uwagę, jeŜeli nie tworzą
wyraźnie widocznej siatki.
Wymiarów skaz znajdujących się poza obszarem czynnym nie normalizuje się.
Szczerby na brzegach poza wymiarem czynnym są dopuszczalne jeŜeli ich największy
wymiar nie przekracza 0,03 D, przy czym szczerby o wymiarach powyŜej 0,5 mm powinny
być matowane.
Powierzchnię szczerby leŜącą w obszarze czynnym przyrównuje się do punktu
i klasyfikuje w danej klasie czystości.
Przykłady:
Soczewka Ф 40 mm, Ф czynne 38 mm.
klasa P VII
Punkty 2,0 x 38 mm = 76 punktów o średnicy 0,3 do 2,0 mm, ale nie więcej niŜ 25% z 76 =
19 punktów duŜych o średnicy większej niŜ 1,0 mm.
Rysy 3,0 x 38 mm = 114 mm łącznej długości rys o szerokości 0,01 do 0,1 mm, ale nie
więcej niŜ 25% z 114 = 28 mm rys o szerokości 0,05 do 0,1 mm
Maksymalna szczerba poza Ф czynnym 0,03 x 38 mm = 1,14 mm.
Soczewka fi 24 mm, fi czynne 23 mm.
klasa P IV
Punkty 1,2 x 23 mm = 27 punktów o średnicy 0,015 do 0,3 mm, ale nie więcej niŜ 25% z 27 =
6 punktów duŜych o średnicy większej niŜ 0,1 mm.
Rysy 1,0 x 23 mm = 23 mm łącznej długości rys o szerokości 0,004 do 0,01 mm, ale nie
więcej niŜ 25% z 23 = 5 mm rys o szerokości 0,008 do 0,01 mm.
Maksymalna szczerba poza fi czynnym 0,03 x 23 mm = 0,69 mm.
4.3.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1.
Co oznacza czystość powierzchni optycznej?
2.
Ile jest klas czystości?
3.
Jakich przyrządów optycznych uŜywamy do sprawdzania czystości optycznej?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
36
4.3.3. Ćwiczenia
Ćwiczenie 1
Sprawdź czystość powierzchni płytki ogniskowej, soczewki ujemnej i płytki ochronnej
zgodnie z dokumentacją techniczną.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące czystości elementów
optycznych,
2)
zapoznać się dokładnie z normą dotyczącą czystości optycznej powierzchni elementów
optycznych,
3)
odczytać dokumentację techniczną otrzymanych elementów,
4)
zapoznać się ze stanowiskiem do sprawdzania czystości,
5)
dobrać sprzęt kontrolny,
6)
umyć dokładnie sprawdzane elementy,
7)
sprawdzić wygląd powierzchni zgodnie z wymaganiami normy,
8)
sprawdzić czystość badanych elementów,
9)
sporządzić notatkę.
WyposaŜenie stanowiska pracy:
−
instrukcja stanowiskowa,
−
dokumentacja techniczna badanych elementów,
−
źródła światła, ekrany zgodnie z instrukcją,
−
lupy 4
x
, lupy 6
x
, lupa Brinella, mikroskop o powiększeniu min.10
x
i aperturze min. 0,3,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
−
pędzelki do odpylenia,
−
lampa sodowa,
−
norma dotycząca czystości elementów optycznych,
−
płytki ogniskowe, soczewki wklęsłe i płytki ochronne do pomiaru,
−
arkusz spostrzeŜeń.
Ćwiczenie 2
Określ klasę czystości powierzchni otrzymanych elementów.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1)
wyszukać w materiałach dydaktycznych informacje dotyczące czystości elementów
optycznych,
2)
zapoznać się dokładnie z normą dotyczącą czystości optycznej powierzchni elementów
optycznych,
3)
zapoznać się ze stanowiskiem do sprawdzania czystości,
4)
dobrać sprzęt kontrolny,
5)
umyć dokładnie sprawdzane elementy,
6)
sprawdzić wygląd powierzchni zgodnie z wymaganiami normy,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
37
7)
określić klasę czystości badanych elementów,
8)
sporządź notatkę z wykonanego badania.
WyposaŜenie stanowiska pracy:
−
instrukcja stanowiskowa,
−
źródła światła, ekrany zgodnie z instrukcją,
−
lupy 4
x
, lupy 6
x
, lupa Brinella, mikroskop o powiększeniu min. 10
x
i aperturze min. 0,3,
−
mieszanka spirytusowo-eterowa,
−
ściereczki batystowe,
−
pędzelki do odpylenia,
−
lampa sodowa,
−
norma dotycząca czystości elementów optycznych,
−
płytki ogniskowe, soczewki wklęsłe i płytki ochronne do pomiaru.
4.3.4. Sprawdzian postępów
Czy potrafisz:
Tak
Nie
1)
zdefiniować pojęcia czystości powierzchni elementów optycznych?
2)
scharakteryzować klasy czystości?
3)
dobrać przyrządy optyczne do badania czystości?
4)
określić klasę czystości zadanej powierzchni?
5)
sprawdzić czystość elementów optycznych?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
38
5. SPRAWDZIAN OSIĄGNIĘĆ
INSTRUKCJA DLA UCZNIA
1.
Przeczytaj uwaŜnie instrukcję.
2.
Podpisz imieniem i nazwiskiem kartę odpowiedzi.
3.
Zapoznaj się z zestawem zadań testowych.
4.
Test zawiera 25 zadania. Do kaŜdego zadania dołączone są 4 moŜliwe odpowiedzi. Tylko
jedna jest prawidłowa.
5.
Udzielaj odpowiedzi na załączonej karcie odpowiedzi, stawiając w odpowiedniej rubryce
znak X. W przypadku pomyłki naleŜy błędną odpowiedź zaznaczyć kółkiem, a następnie
ponownie zakreślić odpowiedź prawidłową.
6.
Zadania wymagają stosunkowo prostych obliczeń, które powinieneś wykonać przed
wskazaniem poprawnego wyniku.
7.
Pracuj samodzielnie, bo tylko wtedy będziesz miał satysfakcję z wykonanego zadania.
8.
Jeśli udzielenie odpowiedzi będzie Ci sprawiało trudność, wtedy odłóŜ jego rozwiązanie
na później i wróć do niego, gdy zostanie Ci wolny czas.
9.
Na rozwiązanie testu masz 45 min.
Powodzenia
ZESTAW ZADAŃ TESTOWYCH
1. Współczynnik załamania szkła moŜemy zmierzyć za pomocą
a)
kolimatora.
b)
lunety.
c)
goniometru.
d)
lupy.
2.
Parametr odróŜniający materiały optyczne to
a)
współczynnik załamania.
b)
niezmiennik załamania.
c)
zabarwienie.
d)
niezmiennik Keplera.
3.
Luneta autokolimacyjna słuŜy do pomiaru
a)
dwójłomności.
b)
odchyłki kątów w pryzmatach.
c)
określenia czystości powierzchni.
d)
sprawdzenia pęcherzowatości.
4.
Kolimator wchodzi w skład układu do pomiaru
a)
smuŜystości.
b)
pęcherzowatości.
c)
dwójłomności.
d)
promienia soczewki.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
39
5.
NapręŜenia w elementach optycznych moŜemy sprawdzić za pomocą
a)
polarymetru.
b)
refraktometru.
c)
polaryskopu.
d)
szklanego sprawdzianu interferencyjnego.
6.
Do sprawdzania czystości optycznej uŜywamy
a)
kolimatora.
b)
lupy 6
x
.
c)
lunety pomiarowej.
d)
teodolitu.
7.
Średnicę soczewki moŜemy zmierzyć za pomocą
a)
suwmiarki.
b)
szklanego sprawdzianu interferencyjnego.
c)
kątomierza.
d)
głębokościomierza.
8.
Szklanym sprawdzianem interferencyjnym moŜemy dokonać pomiaru
a)
średnicy soczewki.
b)
grubości soczewki.
c)
fazy soczewki.
d)
promienia krzywizny soczewki.
9.
Fazę w elementach optycznych moŜemy zmierzyć za pomocą
a)
suwmiarki.
b)
mikromierza.
c)
sferometru zegarowego.
d)
lupy Brinella.
10.
Sferometr słuŜy do pomiaru
a)
grubości soczewki.
b)
promienia krzywizny zwierciadła.
c)
średnicy soczewki.
d)
płaskości płytki.
11.
Refraktometr Abbego to przyrząd słuŜący do
a)
pomiaru współczynnika załamania szkła.
b)
refrakcji oka.
c)
zdolności rozdzielczej,
d)
współczynnik Abbego.
12.
SmuŜystość w szkle sprawdzamy w układzie
a)
źródło światła, stolik, ekran.
b)
kolimator, luneta.
c)
źródło światła, stolik, lupa.
d)
źródło światła, stolik, mikroskop pomiarowy.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
40
13.
Centralność soczewek sprawdzamy za pomocą układu
a)
źródło światła, stolik, ekran.
b)
kolimator, uchwyt mocujący, mikroskop pomiarowy.
c)
kolimator, uchwyt mocujący, luneta autokolimacyjna.
d)
źródło światła, stolik, lupa.
14.
Ława optyczna moŜe słuŜyć do
a)
zestawiania układów pomiarowych.
b)
badania napręŜeń.
c)
sprawdzania płaskości.
d)
sprawdzania czystości elementów optycznych.
15.
Przedstawiony schemat pomiarowy słuŜy do
a)
pomiaru promienia.
b)
sprawdzenia smuŜystości.
c)
sprawdzenia pęcherzowatości.
d)
pomiarów kątów.
16.
Przedstawiony schemat pomiarowy słuŜy do
a)
pomiaru promienia.
b)
sprawdzenia smuŜystości.
c)
sprawdzenia pęcherzowatości.
d)
pomiarów kątów.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
41
17.
Przedstawiony schemat pomiarowy słuŜy do
a)
pomiaru promienia.
b)
pomiaru ogniskowej.
c)
średnicy soczewki.
d)
pomiarów kątów.
18.
Przedstawiony schemat pomiarowy słuŜy do
a)
pomiaru promienia.
b)
pomiaru kąta odchylenia klina.
c)
pomiaru centralności soczewki.
d)
pomiarów ogniskowych.
19.
Pryzmat Amici zamontowany jest w
a)
refraktometrze Pulfricha.
b)
refraktometrze Abbego.
c)
sferometrze.
d)
goniometrze.
20.
Zjawisko całkowitego wewnętrznego odbicia wykorzystane jest do budowy
a)
sferometru
b)
goniometru.
c)
refraktometru.
d)
kolimatora.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
42
21.
Schemat pokazany na rysunku słuŜy do
a)
pomiaru promienia.
b)
badania powierzchni płaskich.
c)
badania zdolności rozdzielczej.
d)
pomiaru kąta.
22.
Symbol PV określa klasę
a)
czystości.
b)
pęcherzowatości.
c)
smuŜystości.
d)
niejednorodności.
23.
Do sprawdzania bardzo dokładnych powierzchni płaskich wykorzystujemy
a)
interferencji jednopromieniowej.
b)
interferencji dwupromieniowej.
c)
interferencji trójpromieniowej.
d)
interferencji wielopromieniowej.
24.
Przedstawiony wzór
y
k
f
′
⋅
=
słuŜy do wyznaczania
a)
ogniskowej badanego elementu optycznego.
b)
ogniskowej kolimatora kontrolnego.
c)
ogniskowej lunety pomiarowej.
d)
ogniskowej mikroskopu kontrolnego.
25.
Pokazane kątowniki do pomiaru pryzmatów wykonane są
a)
z mosiądzu.
b)
ze stali.
c)
ze szkła.
d)
z tworzywa sztucznego.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
43
KARTA ODPOWIEDZI
Imię i nazwisko..........................................................................................
Dokonywanie pomiarów elementów optycznych
Zakreśl poprawną odpowiedź, wpisz brakujące części zdania lub wykonaj rysunek
Nr
zadania
Odpowiedź
Punkty
1
a
b
c
d
2
a
b
c
d
3
a
b
c
d
4
a
b
c
d
5
a
b
c
d
6
a
b
c
d
7
a
b
c
d
8
a
b
c
d
9
a
b
c
d
10
a
b
c
d
11
a
b
c
d
12
a
b
c
d
13
a
b
c
d
14
a
b
c
d
15
a
b
c
d
16
a
b
c
d
17
a
b
c
d
18
a
b
c
d
19
a
b
c
d
20
a
b
c
d
21
a
b
c
d
22
a
b
c
d
23
a
b
c
d
24
a
b
c
d
25
a
b
c
d
Razem:
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
44
6.
LITERATURA
1.
Chalecki J: Przyrządy optyczne. WNT, Warszawa 1979
2.
Hanc T: Pomiary Optyczne. WNT, Warszawa 1964
3.
Jóźwicki R: Optyka Instrumentalna. WNT, Warszawa 1970
4.
Krawcow J. A., Orłow J. I: Optyka geometryczna ośrodków jednorodnych. WNT,
Warszawa 1993
5.
Legun Z: Technologia elementów optycznych. WNT, Warszawa 1982
6.
Meyer – Arendt J. R: Wstęp do optyki. PWN, Warszawa 1977
7.
Nowak J., Zając M: Optyka – kurs elementarny. Oficyna Wydawnicza Politechniki
Wrocławskiej, Wrocław 1998
8.
Pluta M: Mikroskopia optyczna. PWN, Warszawa 1982
9.
Sojecki A: Optyka. WSiP, Warszawa 1997
10.
Szymański J: Budowa i montaŜ aparatury optycznej. WSiP, Warszawa 1978
11.
Tryliński W. (red.): Konstrukcja przyrządów i urządzeń precyzyjnych. WNT, Warszawa
1996