Czech, Kachel sprawko



literki

A =

0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0


B =

0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0


C =

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 0 0 0 1
0 1 0 0 0 1
0 0 1 1 1 1


D =

0 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0


kA =

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0


kB =

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0


kC =

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
1


kD =

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0


P =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 1
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
1 1 1 1
0 0 0 1
0 0 0 1
1 1 1 1
0 0 0 1
0 0 0 1
1 0 1 1
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0


T =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


net =

Neural Network

name: 'Custom Neural Network'
efficiency: .cacheDelayedInputs, .flattenTime,
.memoryReduction
userdata: (your custom info)

dimensions:

numInputs: 1
numLayers: 1
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 196
sampleTime: 1

connections:

biasConnect: true
inputConnect: true
layerConnect: false
outputConnect: true

subobjects:

inputs: {1x1 cell array of 1 input}
layers: {1x1 cell array of 1 layer}
outputs: {1x1 cell array of 1 output}
biases: {1x1 cell array of 1 bias}
inputWeights: {1x1 cell array of 1 weight}
layerWeights: {1x1 cell array of 0 weights}

functions:

adaptFcn: 'adaptwb'
adaptParam: (none)
derivFcn: 'defaultderiv'
divideFcn: (none)
divideParam: (none)
divideMode: 'sample'
initFcn: 'initlay'
performFcn: 'mae'
performParam: .regularization, .normalization
plotFcns: {'plotperform', plottrainstate}
plotParams: {1x2 cell array of 2 params}
trainFcn: 'trainc'
trainParam: .showWindow, .showCommandLine, .show, .epochs,
.time, .goal, .max_fail

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing 0 layer weight matrices
b: {1x1 cell} containing 1 bias vector

methods:

adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs

Rozmiary macierzy wag:
[4x48 double]

Zawartosc macierzy wag:
Columns 1 through 12

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Columns 13 through 24

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Columns 25 through 36

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Columns 37 through 48

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Rozmiar wektora wsp. progowych:
[4x1 double]

Zawartosc wektora wsp progowych:
0
0
0
0


net =

Neural Network

name: 'Custom Neural Network'
efficiency: .cacheDelayedInputs, .flattenTime,
.memoryReduction, .flattenedTime
userdata: (your custom info)

dimensions:

numInputs: 1
numLayers: 1
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 196
sampleTime: 1

connections:

biasConnect: true
inputConnect: true
layerConnect: false
outputConnect: true

subobjects:

inputs: {1x1 cell array of 1 input}
layers: {1x1 cell array of 1 layer}
outputs: {1x1 cell array of 1 output}
biases: {1x1 cell array of 1 bias}
inputWeights: {1x1 cell array of 1 weight}
layerWeights: {1x1 cell array of 0 weights}

functions:

adaptFcn: 'adaptwb'
adaptParam: (none)
derivFcn: 'defaultderiv'
divideFcn: (none)
divideParam: (none)
divideMode: 'sample'
initFcn: 'initlay'
performFcn: 'mae'
performParam: .regularization, .normalization
plotFcns: {'plotperform', plottrainstate}
plotParams: {1x2 cell array of 2 params}
trainFcn: 'trainc'
trainParam: .showWindow, .showCommandLine, .show, .epochs,
.time, .goal, .max_fail

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing 0 layer weight matrices
b: {1x1 cell} containing 1 bias vector

methods:

adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs

Rozmiary macierzy wag:
[4x48 double]

Zawartosc macierzy wag:
Columns 1 through 12

0 0 0 0 0 0 0 0 0 0 -1 -1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Columns 13 through 24

-1 -1 -1 0 0 -1 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 -1 0 0 0 0 -1 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 -1

Columns 25 through 36

0 -1 0 0 -1 0 0 4 0 -1 0 0
0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 -1 0 0 1 1

Columns 37 through 48

-1 0 0 4 0 -1 0 0 -1 -1 -1 -1
0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0

Rozmiar wektora wsp. progowych:
[4x1 double]

Zawartosc wektora wsp progowych:
-1
0
0
0


Y =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


AA =

1 0 0 1 0 1
0 1 1 1 1 0
0 0 0 0 0 1
1 0 0 0 1 0
0 1 0 1 1 0
0 0 1 1 1 0
0 1 0 1 0 1
0 0 0 1 1 0


BB =

0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0


CC =

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 0 0 0 1
0 1 0 0 0 1
0 0 1 1 1 1


DD =

0 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0


kAA =

1
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
1
1
0
1
0
0
0
1
0


kBB =

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0


kCC =

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
1


kDD =

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0


PP =

1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1
0 1 1 1
0 1 1 1
1 1 1 1
0 1 1 1
1 1 1 1
0 1 0 1
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
0 1 0 1
1 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 1 1
1 0 0 0
1 0 0 0
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
1 1 0 1
1 1 1 1
1 1 0 1
0 1 0 1
1 1 1 1
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
1 0 1 0
0 0 1 0


YY =

0 0 0 0
0 0 0 0
1 0 1 0
0 1 0 1

diary off


Wyszukiwarka

Podobne podstrony:
Czech, Kachel ?finicja macierzy
Zad 1 Rozpływ Czech, Kachel ad3
kaskada sprawko
geodezja sprawko 3
sprawko 48 (1)
SPALANIE SPRAWKO 7n
LABORATORIUM CHEMIA I WYTRZYMALOSC MATERIALOW sprawko 1
lab1 sprawko
przykładowe sprawko
Sprawko fizyka IV
sprawko 3 2nd pochodna?lta=4
sprawko nhip regulator
Ekoma sprawko 1

więcej podobnych podstron