literki
A =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
B =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
C =
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 0 0 0 1
0 1 0 0 0 1
0 0 1 1 1 1
D =
0 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
kA =
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
kB =
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
kC =
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
1
kD =
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
P =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 1
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
1 1 1 1
0 0 0 1
0 0 0 1
1 1 1 1
0 0 0 1
0 0 0 1
1 0 1 1
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
T =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
net =
Neural Network
name: 'Custom Neural Network'
efficiency: .
cacheDelayedInputs, .
flattenTime,
.
memoryReduction userdata: (your custom info)
dimensions:
numInputs: 1
numLayers: 1
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 196
sampleTime: 1
connections:
biasConnect: true
inputConnect: true
layerConnect: false
outputConnect: true
subobjects:
inputs: {1x1 cell array of 1 input}
layers: {1x1 cell array of 1 layer}
outputs: {1x1 cell array of 1 output}
biases: {1x1 cell array of 1 bias}
inputWeights: {1x1 cell array of 1 weight}
layerWeights: {1x1 cell array of 0 weights}
functions:
adaptFcn: '
adaptwb'
adaptParam: (none)
derivFcn: '
defaultderiv'
divideFcn: (none)
divideParam: (none)
divideMode: 'sample'
initFcn: '
initlay'
performFcn: '
mae'
performParam: .
regularization, .
normalization plotFcns: {'
plotperform',
plottrainstate}
plotParams: {1x2 cell array of 2 params}
trainFcn: '
trainc'
trainParam: .
showWindow, .
showCommandLine, .
show, .
epochs,
.
time, .
goal, .
max_fail weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing 0 layer weight matrices
b: {1x1 cell} containing 1 bias vector
methods:
adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs
Rozmiary macierzy wag:
[4x48 double]
Zawartosc macierzy wag:
Columns 1 through 12
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Columns 13 through 24
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Columns 25 through 36
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Columns 37 through 48
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Rozmiar wektora wsp. progowych:
[4x1 double]
Zawartosc wektora wsp progowych:
0
0
0
0
net =
Neural Network
name: 'Custom Neural Network'
efficiency: .
cacheDelayedInputs, .
flattenTime,
.
memoryReduction, .
flattenedTime userdata: (your custom info)
dimensions:
numInputs: 1
numLayers: 1
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 196
sampleTime: 1
connections:
biasConnect: true
inputConnect: true
layerConnect: false
outputConnect: true
subobjects:
inputs: {1x1 cell array of 1 input}
layers: {1x1 cell array of 1 layer}
outputs: {1x1 cell array of 1 output}
biases: {1x1 cell array of 1 bias}
inputWeights: {1x1 cell array of 1 weight}
layerWeights: {1x1 cell array of 0 weights}
functions:
adaptFcn: '
adaptwb'
adaptParam: (none)
derivFcn: '
defaultderiv'
divideFcn: (none)
divideParam: (none)
divideMode: 'sample'
initFcn: '
initlay'
performFcn: '
mae'
performParam: .
regularization, .
normalization plotFcns: {'
plotperform',
plottrainstate}
plotParams: {1x2 cell array of 2 params}
trainFcn: '
trainc'
trainParam: .
showWindow, .
showCommandLine, .
show, .
epochs,
.
time, .
goal, .
max_fail weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing 0 layer weight matrices
b: {1x1 cell} containing 1 bias vector
methods:
adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs
Rozmiary macierzy wag:
[4x48 double]
Zawartosc macierzy wag:
Columns 1 through 12
0 0 0 0 0 0 0 0 0 0 -1 -1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Columns 13 through 24
-1 -1 -1 0 0 -1 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 -1 0 0 0 0 -1 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 -1
Columns 25 through 36
0 -1 0 0 -1 0 0 4 0 -1 0 0
0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 -1 0 0 1 1
Columns 37 through 48
-1 0 0 4 0 -1 0 0 -1 -1 -1 -1
0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0
Rozmiar wektora wsp. progowych:
[4x1 double]
Zawartosc wektora wsp progowych:
-1
0
0
0
Y =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
AA =
1 0 0 1 0 1
0 1 1 1 1 0
0 0 0 0 0 1
1 0 0 0 1 0
0 1 0 1 1 0
0 0 1 1 1 0
0 1 0 1 0 1
0 0 0 1 1 0
BB =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
CC =
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 0 0 0 1
0 1 0 0 0 1
0 0 1 1 1 1
DD =
0 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
kAA =
1
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
1
1
0
1
0
0
0
1
0
kBB =
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
kCC =
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
1
kDD =
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
PP =
1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1
0 1 1 1
0 1 1 1
1 1 1 1
0 1 1 1
1 1 1 1
0 1 0 1
0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
0 1 0 1
1 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0
1 1 1 1
1 0 0 0
1 0 0 0
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
1 1 0 1
1 1 1 1
1 1 0 1
0 1 0 1
1 1 1 1
1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
1 0 1 0
0 0 1 0
YY =
0 0 0 0
0 0 0 0
1 0 1 0
0 1 0 1
diary off
Wyszukiwarka
Podobne podstrony:
Czech, Kachel ?finicja macierzyZad 1 Rozpływ Czech, Kachel ad3kaskada sprawkogeodezja sprawko 3sprawko 48 (1)SPALANIE SPRAWKO 7nLABORATORIUM CHEMIA I WYTRZYMALOSC MATERIALOW sprawko 1lab1 sprawkoprzykładowe sprawkoSprawko fizyka IVsprawko 3 2nd pochodna?lta=4sprawko nhip regulatorEkoma sprawko 1więcej podobnych podstron