Wprowadzenie do Matlaba w przykładach


Wprowadzenie do Matlaba
na przykładach
Tomasz Twardowski
ttward@agh.edu.pl
Kraków 2003
Słowo od Autora
Opis powstał jako pomoc dla studentów pracujących na moich zajęciach, co nie wyklucza
innego jego użycia. Nie ma być wyczerpującym przeglądem komend Matlaba, raczej
ułatwieniem startu w nowym środowisku obliczeniowym. Uczy jak korzystać z systemu
pomocy, przybliża podstawowe komendy i struktury języka. W założeniu miał być zwarty i
 strawny w ciągu godziny-dwóch pracy przy komputerze. Sugerowany sposób korzystania z
dokumentu to jednoczesne czytanie komentarzy i wykonywanie w Matlabie podawanych
przykładów. Dla oszczędności miejsca usunięto puste linie z zapisów sesji interaktywnych.
Listingi programów i komunikaty Matlaba są wydrukowane czcionką Times i odmiennie
justowane, a używane w tekście symbole Matlaba są podkreślone (jak np. nazwa funkcji
disp).
Z oszczędności miejsca konsekwentnie stosuję rodzaj męski pisząc o Czytelniku, płeć
piękną proszę o wyrozumiałość. Opis ma dobrze służyć jego użytkownikowi, więc jeśli masz
jakieś krytyczne i jednocześnie konstruktywne uwagi na temat tego dokumentu to prześlij je
na mój adres e-mail. Dodać jeszcze muszę, że wyrażane w tekście opinie są moimi
prywatnymi, a nie mojego pracodawcy.
Spis treści
Kilka pytań i odpowiedzi na początek ..................................................................................2
Taki lepszy kalkulator ............................................................................................................3
Programowanie obliczeń .......................................................................................................5
Prezentacja danych................................................................................................................7
Nowe możliwości....................................................................................................................9
Kilka pytań i odpowiedzi na początek
Czym jest Matlab ?
Matlab jest środowiskiem (edytor, debugger, okno poleceń, okna wykresów) obliczeniowym z
interpreterem specyficznego języka zapisu zadań obliczeniowych. Może pracować w trybie
interakcyjnym przez wykonywanie poszczególnych poleceń z linii komend jak i w trybie
wsadowym przez wykonywanie instrukcji z pliku (skryptu Matlaba nazywanego m-plikiem).
Czym nie jest Matlab ?
Matlab nie jest językiem ogólnego przeznaczenia i z tego powodu generowane przez niego
aplikacje nie będą konkurencyjne względem efektywnych czasowo języków C++ czy Fortran.
Pisanie np. krytycznej czasowo aplikacji sterowania szybkiego obiektu w Matlabie (nawet w
wersji skompilowanej) czy gry multimedialnej, chociaż możliwe, nie jest dobrym pomysłem.
Którą wersję Matlaba opisuje ten dokument ?
Opis dotyczy części wspólnej języka i funkcji dla wersji 4.x, 5.x i 6.x. Prezentowane przykłady
były testowane na wersji 4.2. Elementy języka i funkcje wprowadzone w wersjach 5.x i 6.x są
opisane w odrębnym rozdziale.
Dlaczego Matlab jest taki popularny ?
O sile i popularności tego środowiska obliczeniowego decydują zasobne biblioteki gotowych
funkcji (toolbox y) i łatwość poruszania się w środowisku obliczeniowym. Dostępne funkcje
pokrywają podstawowe potrzeby obliczeniowe w wielu dziedzinach i mogą być
modyfikowane na poziomie kodu zródłowego.
Do czego można wykorzystać Matlaba ?
Po pierwsze do obliczeń numerycznych na macierzach liczb zespolonych. Po drugie do
przedstawiania informacji z obliczeń w postaci wykresów o różnej postaci z możliwością ich
eksportowania do edytorów. Po trzecie do jeszcze kilku mniej popularnych, a czasem
dziwnych, zastosowań.
Czy wynikom obliczeń w Matlabie można ufać ?
Biblioteki Matlaba zawierają funkcje pisane w większości przez specjalistów. Niektóre
toolbox y firmują nazwiska znane w dziedzinach specjalistycznych. Nie powinny więc
zawierać błędów. Innym problemem jest możliwy w niektórych obliczeniach duży stopień
kumulacji niedokładności reprezentacji numerycznej danych. W przypadku takich trudnych
zadań obliczeniowych Matlab ostrzega o możliwej niedokładności wyniku. Ograniczone
zaufanie do narzędzi i świadomość tego co się próbuje policzyć jest najlepszym wyjściem.
Czy kod w Matlabie może współpracować z kodem kompilowanym ?
Ze środowiska można wywoływać własne funkcje (w postaci wykonywalnej biblioteki DLL)
kompilowane w innych środowiskach programowania (np. VC++). Matlab ma również
możliwość kompilowania kodu i tworzenia samodzielnej aplikacji.
Skąd wziąć Matlaba ?
Jeśli chcesz mieć własną licencję to musisz zaoszczędzić odpowiednią kwotę pieniędzy
(dość dużą jeśli wybieramy zestaw z kilkoma toolboxami) i wybrać się do sprzedawcy tego
oprogramowania. Ponieważ ten dokument jest przeznaczony dla uczciwych ludzi, inne
polecane wyjście to wybranie czegoś tańszego (patrz poniżej).
Jeśli nie Matlab to co ?
Istnieją inne środowiska obliczeń, jedne ukierunkowane na obliczenia numeryczne (Octave,
Scilab, MathCAD), inne na obliczenia symboliczne (Mathematica, Maple). Podobno Octave
pod Linuxa jest darmowy i ma składnię zbliżoną do Matlaba. Sam z żadnego z wymienionych
nie korzystałem, bo nie mam potrzeby (zatrudnia mnie zamożna instytucja ;-)).
Taki lepszy kalkulator
Uruchomiłeś Matlaba i widzisz okienko Command Window z podpowiedzią pomocy i
znakiem zachęty:
To get started, select "MATLAB Help" from the Help menu.
>>
Bez dużej wiedzy na temat Matlaba możesz prowadzić obliczenia w stylu kalkulatorowym, z
użyciem wartości zespolonych, stałych predefiniowanych (jak operator zespolony j i wartość
pi) i funkcji (opis dostępny w systemie pomocy jak w przykładzie), np.:
>> log10(sqrt(10))*3^4 + real(exp(j*pi/4))*3/4 - sin(pi/2)
ans =
40.0303
>> help log10
LOG10 Common (base 10) logarithm.
LOG10(X) is the base 10 logarithm of the elements of X.
Complex results are produced if X is not positive.
See also LOG, LOG2, EXP, LOGM.
Jak można zobaczyć w powyższym przykładzie wynik wykonania polecenia jest domyślnie
zapisywany do zmiennej ans. Jednak możemy go zapisać do dowolnie nazwanej (poza
nazwami już użytymi w środowisku Matlaba) innej zmiennej, bez potrzeby jej deklarowania.
Możemy również używać wyników zapamiętanych w zmiennych w dalszych obliczeniach.
Zarówno dane do obliczeń jak i wyniki obliczeń mogą być macierzami o dowolnych
(ograniczeniem jest rozmiar pamięci) wymiarach. Nazwy i wymiary zdefiniowanych
zmiennych możesz odczytać komendą whos.
>> T=[1 0 0; 0 0 1; 0 1 0]
T =
1 0 0
0 0 1
0 1 0
>> x=[1;2;3]
x =
1
2
3
>> x=T*x
x =
1
3
2
>> y=x'*x % Komentarz: operator apostrof ( ) oznacza transpozycję
y =
14
>> whos
Name Size Bytes Class
T 3x3 72 double array
x 3x1 24 double array
y 1x1 8 double array
Grand total is 13 elements using 104 bytes
>> z=y*T;
>> z
z =
14 0 0
0 0 14
0 14 0
Jak można zauważyć w przedostatnim poleceniu dodanie średnika (;) na końcu wyrażenia
powoduje  ciche przypisanie do zmiennej, bez wypisywania jej wartości na ekranie. W
dowolnym momencie możemy poznać zawartość zmiennej wpisując jej nazwę, oczywiście
bez średnika, i naciskając Enter (jak w ostatnim poleceniu z przykładu). Średnik spełnia
także ważną rolę przy wypełnianiu macierzy wartościami, jak w pierwszych dwóch
poleceniach. Sygnalizuje on interpreterowi koniec wiersza macierzy (przejście do nowego
wiersza), podczas gdy przecinek i spacja separują wartości w kolejnych kolumnach tego
samego wiersza. Matlab sprawdza poprawność formalną wpisywanych poleceń
obliczeniowych, w tym zgodność wymiarów macierzy.
Macierze mogą być parametrami wywołania większości funkcji, które bądz realizują operacje
macierzowe bądz wykonują operację dla każdego elementu macierzy. Rozróżnienie na te
dwa typy operacji macierzowych istnieje również dla standardowych operatorów mnożenia,
dzielenia i potęgowania, które wykonują operacje macierzowe w wersji standardowej
(operatory *, / i ^) lub operacje element przez element w wersji specjalnej (operatory .*, ./ i
.^).
>> a=[1 2 3; 3 2 1];
>> max(a)
ans =
3 2 3
>> b=[1 0 0; 0 1 0; 0 0 1];
>> c=[a; 2 3 1]
c =
1 2 3
3 2 1
2 3 1
>> b*a
??? Error using ==> *
Inner matrix dimensions must agree.
>> c*b
ans =
1 2 3
3 2 1
2 3 1
>> c.*b
ans =
1 0 0
0 2 0
0 0 1
>> c^2
ans =
13 15 8
11 13 12
13 13 10
>> c.^2
ans =
1 4 9
9 4 1
4 9 1
>> b./c
ans =
1.0000 0 0
0 0.5000 0
0 0 1.0000
>> b/c
ans =
-0.0833 0.5833 -0.3333
-0.0833 -0.4167 0.6667
0.4167 0.0833 -0.3333
Wyniki działania niektórych funkcji macierzowych mogą początkowo dziwić, jak w drugiej linii
przykładu funkcja max(). Jednoznacznie działa ona dla wektorów, zwracając wartość
maksymalną. Jej zdefiniowane dla macierzy działanie polega na wyznaczeniu wartości
maksymalnej z każdej kolumny, i zwróceniu wektora wyznaczonych wartości. Wyznaczenie
maksymalnej wartości w macierzy wymaga więc podwójnego wywołania max(max(a)).
Programowanie obliczeń
Jak już wspomniano, Matlab może interpretować instrukcje zapisane w pliku. Plik taki jest
nazywany m-plikiem lub skryptem Matlaba i musi mieć rozszerzenie  .m . Ponieważ
programy więcej niż 3-linijkowe trudno jest obsługiwać w trybie interakcyjnym, m-pliki są
często wykorzystywanym rozwiązaniem.
Nawet proste obliczenia, które mają być wykonywane warunkowo lub wielokrotnie,
wymagają użycia konstrukcji sterujących. Takie konstrukcje językowe to instrukcje warunku
(if, switch) i pętli (for, while). Podstawowa instrukcja warunkowa w Matlabie ma postać
ogólną:
>> help if
IF IF statement condition.
The general form of the IF statement is
IF expression
statements
ELSEIF expression
statements
ELSE
statements
END
&
Example
if I == J
A(I,J) = 2;
elseif abs(I-J) == 1
A(I,J) = -1;
else
A(I,J) = 0;
end
a instrukcja podstawowej pętli:
>> help for
FOR Repeat statements a specific number of times.
The general form of a FOR statement is:
FOR variable = expr, statement, ..., statement END
&
Example
FOR I = 1:N,
FOR J = 1:N,
A(I,J) = 1/(I+J-1);
END
END
FOR S = 1.0: -0.1: 0.0, END steps S with increments of -0.1
FOR E = EYE(N), ... END sets E to the unit N-vectors.
Na powyższych listingach pojawiły się dwa nie omawiane dotąd elementy. Pierwszy to
indeksowanie elementów w macierzy przez podanie pozycji elementu: A(i,j)=0 oznacza
wpisanie wartości 0 na przecięciu wiersza i i kolumny j. Elementy macierzy są w Matlabie
indeksowane od 1. Drugi nowy element to wektorowe zadawanie wartości przez podanie
wartości początkowej, przyrostu i wartości końcowej (granicznej). W ten sposób polecenie
generowania np. wektora osi czasu dla sygnału sinusoidalnego, zamiast postaci rozwlekłej i
wolno działającej, można zmieścić w jednej linijce.
N=100; % Ilość podprzedziałów osi czasu
dt=2*pi/N;
% Wersja z pętlą
for i=1:N +1 % i = [ od 1 do N co 1 ] (1 to domyślny przyrost)
t(i)=(i-1)*dt; % Wpis na pozycji (i)
end
% Wersja wektorowa
t=0:dt:2*pi;
% Wersja funkcyjna
t=linspace(0,2*pi,N+1); % generuje zadaną ilość równoodległych punktów
Opisane dotąd możliwości języka nie pozwalają na pisanie rozbudowanych programów, z
powodu niemożności lokalnego zastosowania zmiennych. Możliwość taką, jak w językach
ogólnego przeznaczenia, dają funkcje, czyli części kodu operujące w wydzielonej przestrzeni
zmiennych, komunikujące się z przestrzenią zewnętrzną przez parametry otrzymane i
zwracane. Dzięki własnym funkcjom w Matlabie mamy możliwość rozwijania toolboxów o
nowe operacje. Dość krępujące jest ograniczenie do jednej ilości funkcji w jednym pliku, ale
wynika to z przyjętego w początkach życia Matlaba sposobu utrzymywania informacji o
dostępnych funkcjach. Plik zawierający funkcję musi mieć rozszerzenie  .m (jak skrypt) i
specyficzny nagłówek, czyli pierwszą linię, informujący o parametrach zwracanych i
otrzymywanych. Czas na przykład odrobinę bardziej rozbudowanego niż dotąd programu, z
pętlami, warunkami, własnymi funkcjami i wywołaniami funkcji z toolboxów. Będzie to
przykład obróbki sygnału temperatury dobowej z wyszukiwaniem maksimum, wyznaczaniem
przejścia przez zero z aproksymacji wielomianowej, z prostą filtracją zakłóceń i z
rysowaniem wykresu.
Plik glowny.m lub bezpośrednio w Command Window:
clear all;
close all;
load dane.dat % najpierw trzeba ten plik wygenerować (patrz niżej)
czas=dane(:,1);
temp=dane(:,2);
N=length(czas);
[mt,it]=max(temp);
disp([ Maksymalna zarejestrowana temperatura  , num2str(mt),  o godzinie  ,
num2str(czas(it))]);
% aproksymacja wielomianowa
p=polyfit(czas, temp, 5);
% Znajdz przejścia temperatury przez 0
r=roots(p);
% Wybierz pierwiastki rzeczywiste i leżące wewnątrz przedziału czasu
ir = imag(r)==0 & r>=czas(1) & r<=czas(N);
if any(ir)
disp([ Temperatura przekroczyła zero w momentach:  ]);
for t=find(ir), disp(r(t)); end
end
% Przefiltruj sygnał temperatury własną funkcją odszumiającą
tempo=odszum(temp); % własna funkcja (patrz niżej)
% Przedstaw na wykresie wersję aproksymowaną i odszumioną
plot(czas, tempo,  r , czas, polyval(p,czas),  g ); % o tym w następnym rozdziale
plik odszum.m :
function y=odszum(x)
N=length(x); % ile wartości w wektorze
y(2:N-1)=(x(2:N-1)+x(1:N-2)+x(3:N))/3; % uśrednianie z sąsiadami
y([1 N])=x([1 N]); % wartości graniczne bez zmiany
plik dane.dat można wygenerować sztucznie zamiast mierzenia sekwencją:
t=[0:0.25:24]'; % Od północy do północy
% Pogoda w sam raz na marzec, temperatura  mierzona z małym błędem losowym
temp=-cos(2*pi*t/24)*5+0.1*randn(size(t));
ss=[t temp];
save dane.dat ss -ascii
Plik z wywoływaną funkcją musi się znajdować na ścieżce znanej Matlabowi, tzn. albo na
ścieżce z listy dostępnej przez polecenie path, albo w katalogu bieżącym. Bieżący katalog
jest wyświetlany poleceniem pwd, a zmianę katalogu wykonuje polecenie
cd nazwa_katalogu. Dobra praktyka to zmiana katalogu na własny katalog roboczy zaraz po
rozpoczęciu sesji Matlaba. Listę plików w bieżącym katalogu wyświetla unixowo brzmiące
polecenie ls lub dosowo-podobne dir.
Prezentacja danych
Tradycyjny sposób przedstawiania zależności między danymi to wykres. Ponieważ Matlab
nie jest ukierunkowany symbolicznie, dane wejściowe do polecenia rysowania wykresu
tworzą wektory wartości. Sprawą użytkownika jest odpowiednie przygotowanie danych.
Przykładowe wykresy jednego okresu funkcji sinus w postaci zgrubnej i dużo dokładniejszej
wraz z odpowiednimi poleceniami przedstawiono poniżej.
1
x1=0:2*pi/10:2*pi;
y1=sin(x1);
0.5
x2=0:2*pi/100:2*pi;
0
y2=sin(x2);
plot(x1,y1,x2,y2);
-0.5
-1
0 2 4 6 8
Jak można zauważyć w wywołaniu funkcji rysującej plot, może ona przyjmować wiele
zestawów opisujących wykresy. Każda para parametrów wywołania jest na wykresie
rysowana innym kolorem. Użytkownik może również przejąć kontrolę nad wyglądem wykresu
jak w poniższym bardziej rozbudowanym przykładzie.
% przykład rysowania wykresu zadanego parametrycznie
N=100;
t=0:2*pi/N:2*pi; % generowanie N+1 punktów zmiennej parametrycznej
x=sin(t);
y1=sin(t+pi/4);
y2=sin(t+pi/3);
y3=sin(t+pi/2);
y4=sin(t+pi);
clf; % czyść okno graficzne
plot(x,y1,'y'); % rysuj kolorem żółtym (yellow)
hold on; % następne rysunki będą dodawane bez kasowania poprzednich
plot(x,y2,'r'); % rysuj kolorem czerwonym (red)
plot(x,y3,'g'); % rysuj kolorem zielonym (green)
plot(x,y4,'bo-'); % rysuj kolorem niebieskim (blue) z kółkami w punktach danych
grid on; % narysuj siatkę układu współrzędnych
axis('equal'); % równa skala na osiach dla uzyskania poprawnego okręgu
legend('f=pi/4', 'f=pi/3', 'f=pi/2', 'f=pi');
title('Elipsy');
xlabel('sin(t)');
ylabel('sin(t+f)');
hold off; % zwolnij rysunek
Elipsy
f=pi/4
1
f=pi/3
f=pi/2
f=pi
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1
sin(t)
Poza podstawową komendą plot istnieje szereg innych specjalizowanych, jak hist, bar, stem,
semilogy, loglog. Opis poleceń rysunków dwuwymiarowych podaje komenda help graph2d.
Odrębnym zagadnieniem jest przedstawianie wykresów trójwymiarowych, czyli zależności
danych od dwu zmiennych. Istnieje kilka sposobów reprezentacji informacji trójwymiarowej,
np. poziomice (contour), mapa koloru (pcolor), siatka wartości (mesh) lub powierzchnia
(surf). To zagadnienie omówię na przykładzie wykresów funkcji dwu zmiennych
1
z = , w różnych postaciach.
(x2 - y2 )2 +1
[X,Y]=meshgrid([-3:0.1:3],[-3:0.1:3]); % generuj siatkę wartości dziedziny funkcji
Z=1./((X.^2-Y.^2).^2+1); % oblicz wartości funkcji
close all; % zamknij okna graficzne
% będziemy rysować w pierwszym z czterech układów współrzędnych w jednym oknie
sin(t+f)
subplot(2,2,1);
surf(X,Y,Z); % najzwyklejsza powierzchnia z siatką
subplot(2,2,2) % drugi układ współrzędnych
contour(X,Y,Z); % układ poziomic
axis('equal');
subplot(2,2,3);
pcolor(X,Y,Z); % mapa koloru (wysokość funkcji oznaczana kolorem)
shading('interp'); % włącz wygładzanie  łatek koloru
subplot(2,2,4);
surfl(X,Y,Z); % powierzchnia bez siatki z modelem oświetlenia bocznego
shading('interp');
view([10 70]); % ustaw kąt widzenia powierzchni: azymut=10, elewacja=70
colormap('hot'); % ustaw używaną mapę koloru (uwaga: ustawiana dla całego okna)
Po wklejeniu tego kawałka kodu do Matlaba można podziwiać efekty. Nie zamieszczam ich
tutaj, bo zajmują dużo bajtów. Listę innych poleceń związanych z grafiką w trzech wymiarach
wypisuje help graph3d.
Nowe możliwości
Matlab w wersjach 5.x i 6.x został wzbogacony o nowe możliwości programowania.
Ponieważ sam korzystam z nich tylko wtedy, kiedy muszę, to ograniczę opis do krótkiego
wymienienia tych możliwości z odesłaniem do odpowiedniego hasła systemu pomocy.
1) macierze mogą mieć dowolną ilość wymiarów. Można je tworzyć przez łączenie np.
macierzy dwuwymiarowych wzdłuż trzeciego wymiaru. Funkcja wykonująca łączenie to
cat.
2) Możliwe jest definiowanie struktur polimorficznych, czyli struktur składających się z
danych różnego typu. Przykładowa sekwencja tworząca strukturę:
>> s = struct('strings',{{'hello','yes'}},'lengths',[5 3])
s =
strings: {'hello' 'yes'}
lengths: [5 3]
3) Możliwe jest programowanie obiektowe, tzn. struktury mogą zawierać funkcje, cechy klas
obiektów mogą być dziedziczone, operatory i funkcje mogą być przeciążane. Przykład
przeciążonej funkcji, tzn. funkcji z wieloma implementacjami wybieranymi do wykonania
zależnie od typu danych w wywołaniu, to det. Podobnie rzecz ma się z innymi funkcjami
zaimplementowanymi jednocześnie dla danych symbolicznych i numerycznych.
4) Interaktywna grafika z łatwym modyfikowaniem własności wykresów w okienku wykresu.
5) Środowisko programowania z licznymi narzędziami ułatwiającymi pracę, takimi jak
Launch Pad, Command History, Workspace, Path Set.
6) Kompilator kodu do C/C++, a dalej w odpowiednim środowisku do EXE. Polecenie mcc.
Spośród wymienionych, elementem z którym wcześniej lub pózniej użytkownik będzie się
musiał zapoznać są obiekty. Nowe toolboxy lub uaktualnienia dotychczasowych bazują
właśnie na obiektach. Polecam do poczytania temat pomocy  Programming and Data Types:
MATLAB Classes and Objects wywoływany z Help Navigator.


Wyszukiwarka

Podobne podstrony:
Komp przetw danych Wprowadzenie do MATLABa 1
Wprowadzenie do Matlaba Mirosław Kwiesielewicz
Komp przetw danych Wprowadzenie do MATLABa 2
5 3 Wprowadzenie do MES Przykład belki
5 3 Wprowadzenie do MES Przykład belki
S Wprowadzenie do środowiska matlab
CUDA w przykladach Wprowadzenie do ogolnego programowania procesorow GPU cudawp
WYKŁAD 1 Wprowadzenie do biotechnologii farmaceutycznej
Medycyna manualna Wprowadzenie do teorii, rozpoznawanie i leczenie

więcej podobnych podstron