MECHANICAL PROPERTIES TITANIUM


1400 30
300
Ti-10V-2Fe-3Al
Tensile strength
( )
STA
Base material
0.2%yield strength
Welded portion(400ÚC x 300min annealing)
1200
Ti-6Al-2Sn-4Zr-6Mo
2000
( )
STA
Heat-affected zone(400ÚC x 300min annealing)
20
Ti-15V-3Cr-3Sn-3Al
1800
1000
( )
STA
Titanium alloy
Ti-15V-3Cr-3Sn-3Al (ST)
( )
Ti-6Al-4V Ann
250
( )
Ti-9 Ann
KS120
1600
800
Ti-6Al-4V ELI (ST)
KS100
Ti-15Mo-5Zr-3Al
1400
10
( )
STA
KS85
Steel-nickel alloy
600 Aluminum alloy
1200
KS70
Ti-5Al-2.5Sn ELI
Commercially
Ti-3Al-2.5V
Magnesium alloy
200
1000
KS50
pure titanium
400
0
0 200 400 600 800 1000
KS40
800
Temperature (ÚC)
Fig.2:Specific strength of various materials
200
600
Commercially pure titanium Titanium alloy
Commercially pure titanium (KS50)
400
0
150
1400
6 7
5
( )
Ti-15V-3Cr-3Sn-3Al STA 10 10
Fig.1:Tensile strength of commercially pure titaniums and various titanium 10
1200
200
Repetition frequency
alloys, and 0.2% yield strength(Specified minimum values)
1000
Fig.5:Fatigue characteristics of commercially pure titanium (KS50) base
( )
Ti-6Al-4V Ann
0
800 material and welded portion
-300 -250 -200 -150 -100 -50 0 50
600
Temperature (ÚC)
SUS304
KS70
KS70
400
Ti-1.5Al
KS50
Table 1:Representative characteristics of commercially pure titanium, titanium
200
alloys, and steel base materials (Plate materials)
70
0
0 100 200 300 400 500 600
Representative values
Portions Stress ratio Notch coefficient
Temperature (ÚC)
Base material 0 1.0
1200
0.2%
60
Tensile
Tensile Vickers Erichsen
Base material -1 1.0
Material
1400
yield Elongation
direction
strength hardness value
1000 Welded portion 0 1.0
strength (%) Commercially pure titanium (KS50)
(MPa) (Hv) (mm)
(MPa) Welded portion -1 1.0
800
50
Base material 0 3.0
1200
T 238 332 45.9
Base material -1 3.0
600
KS40
117 11.2
L 181 337 48.2
400 40
1000
T 272 387 41.6
KS50
144 10.3
200
L 222 391 38.7
800
30
0
T 429 551 26.0
0 100 200 300 400 500 600
KS70
202 6.9 Ti-15V-3Cr-3Sn-3Al (ST)
Temperature (ÚC)
L 411 545 25.9
80 600
20
T 888 957 10.1
Ti-6Al-4V
320 -
Ti-5Al-2.5Sn ELI
L 905 959 10.3
60
400
T 615 661 23.0
10
Ti-3Al-2.5V
240 -
L 501 654 20.0
40
200
Ti-6Al-4V ELI(ST)
T 789 828 19.8
Ti-15V-3Cr
0
260 7.9
-3Sn-3Al -300 -250 -200 -150 -100 -50 0 50
L 772 823 19.1
20
Temperature (ÚC)
0
T 169 303 45.0
Mild steel
88 10.1
0
L 167 301 46.5
0 100 200 300 400 500 600
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07
Temperature (ÚC)
T 263 648 58.0 Repetition frequency [-]
Stainless steel
168 13.0
(SUS 304)
L 264 662 55.7
Fig.3:Tensile characteristics of various commercially pure titaniums, various titanium Fig.4:Low temperature tensile properties of commercially pure titanium and Fig.6:Fatigue characteristics of Ti-6Al-4V base material and welded portion
alloys and SUS304 under room temperature and high temperatures various titanium alloys
Low temperature characteristics
Toughness
High temperature characteristics
Fatigue characteristics
2
3
Stress (MPa)
Specific strength [0.2% yield strength/density] (kgf/mm /g/cm )
Tensile strength, 0.2%yield strength (MPa)
Tensile strength(MPa)
Tensile strength(MPa)
0.2%yield strength(MPa)
Elongation(%)
Stress (MPa)
Titanium alloy
Commercially pure titanium
Elongation(%)
Table 2:Comparison of corrosion resistance of various heat exchanger materials
Tantalum Boiling point 23ÚC
100
1.4
8m/s, sea water
Zirconium
Commercially pure titanium
150h
Hastelloy B
Purity of
Sand diameter < 50 m
Material General Pitting Crevice Stress corrosion
Ti-015Pd alloy sea water
Erosion
1.2
corrosion corrosion corrosion cracking
T-15Mo-5Zr-3Al alloy
Clean 1 1 1 1 2
10
Ti-5Ta alloy Titanium
Naval brass
Contaminated 1 1 1 1 2
1.0
AKOT
Clean 2 2 2 1 3
Commercially pure titanium AKOT Al brass
Contaminated 2 4 4 4 3
Hastelloy C
Clean 1 2 2 1 3 0.8
1
Monel
70/30 Cu-Ni
Contaminated 2 4 4 4 3
Clean 1 1 2 1 2 Aluminum brass
Zirconium Stainless steel 0.6
Hastelloy C
Contaminated 1 2 3 2 2
Ti-0.15Pd
90/10 cupronickel
Corrosion resistance rank: 1=Excellent 2=Good 3=Ordinary 4 =Inferior
0.1
Monel
0.4
Inconel
Table 3:Environment causing titanium stress corrosion cracking
316 Stainless steel
70/30
Aluminum bronze
0.2
Environment Susceptible titanium materials
304 Stainless steel 0.01 Cupro-
0 2 4 6 8 10 12 nickel
Methanol containing halogen or acid Commercially pure titanium
Non-aqueous solution
Oxidizing
HCl (mass %)
Non-oxidizing
0
Fuming red nitric asid Ti-6Al-4V
Commercially pure titanium
Fig.7:Corrosion resistance range of various metals Fig.8:Corrosion resistance of commercially pure titanium and corrosion resistant
Brine High strength titanium alloy
0 5 10 15
(Each metal shows excellent corrosion resistance in the arrow-marked range) titanium alloys in hydrochloric acid solution
Sand content in seawater (g/l)
Aqueous solution
High temperature and high pressure
Commercially pure titanium
bromide solution
Fig.11:Sand erosion resistance of commercially pure titanium and copper
High temperature chloride alloys in running sea water
Molten halogen salt High strength titanium alloy
Ti-015Pd alloy
Liquid metal Hg, Cd High strength titanium alloy
250
Commercially pure titanium AKOT
1
Susceptible to crevice corrosion
Magnesium
200
Zinc
Velocity: 2.4 ~ 3.9m/sec
0.5 Beryllium
PdO/TiO2 Temperature: 10 ~ 27ÚC Aluminum alloy
Cadmium
coated titanium
Activated condition
Mild steel/Cast iron
Low alloy steel
Austenitic nickel cast iron
150
Aluminum bronze
Immune to crevice corrosion
Naval brass, bronze, red brass
Tin
Copper
Solder(50/50)
Admiralty brass, aluminum brass
0.1
Manganese bronze
100
Silicon bronze
Tin bronze(G&M)
Stainless steel(410,416)
0.05
316 Stainless steel German silver
90~10 Cupronickel
80~20 Cupronickel
Stainless steel(430)
50
Lead
70~30 Cupronickel
Nickel, aluminum bronze
Nickel -chrome alloy 600 (inconel 600)
304 Stainless steel Silver solders
Nickel 200
Silver
0.01
0
Stainless steel(302,304,312,347)
0 10 20 30 40 50 60 0.001 0.01 0.1 1 10
Nickel-copper alloy 400,K-500
Stainless steel(316,317)
NaOH (mass %) CI- concentration (mass %)
20 alloy (Carpenter 20)
Source:LaQue, F. L.,"The behavior of nickel-copper alloys in seawater",
Nickel-iron-chrome alloy 825 (Inconel 825)
Ni-Cr-Mo-Cu-Si alloy B (Hastelloy B) Journal of the American society of naval engineers,
Fig.9:Corrosion rate of commercially pure titanium deaerated NaOH solution
Fig.10:Boundary of crevice corrosion of various titanium materials and
Titanium
vol. 53, February 1941, #1, pp.22-64
stainless steel in chloride solution Ni-Cr-Mo alloy C (Hastelloy C)
Platinum Tokushuko, Vol.41, No.5, P38
Graphite
+0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6
(1) General properties
Potential (V vs SCE)
Fig.12:Natural potential of various metals in running seawater
(3) Corrosion resistance against chloride solutions
(5) Erosion resistance (7) Reactivity to gas
(6) Galvanic corrosion
(2) Corrosion resistance against acid and alkali
(4) Stress corrosion cracking
(8) Other
Corrosion rate (mm/year)
Chloride concentration
Corrosion rate (mm/year)
Temperature (ÚC)
Corrosion rate (mm/year)
Table 4:Corrosion resistance of titanium and other metals in various corrosive environments Table 5:Difficulties in cutting and shearing titanium and countermeasures
Corrosion resistance
Causes
Difficulties Countermeasures
Conc. Temperature
Classifi-
Corrosion medium
Unalloyed
Commercially pure 304
cation (mass%) (ÚC)
Ti-0.15Pd Hastelloy C
titanium zirconium stainless steel " Slower cutting speed (ex. to 1/3 or less of steel cutting speed ) and re-set the cutting feed
to a fairly coarse pitch, for exothermal control.
25
1
" Use a coolant as much as possible for cooling down the titanium and cutting tool
Boiling
" Heat build-up accumulates easily due to
Hydrochloric acid (HCl) (Generally a non-soluble oil coolant is used for low-speed heavy-duty cutting and
25
less heat capacity in addition to less
Seizure occurs, then
shearing and a soluble cutting coolant is used for high speed cutting/shearing.
10
thermal conductivity.
Boiling
causing a cutting tool to " Replace a cutting tool earlier than usual. If ceramic-, TiC- and TiN-coated tools are used
" Titanium itself reacts easily to cutting tools
for cutting/shearing titanium, their lives get shorter.
25 wear earlier.
1 because of it's active material.
In general, hard steel tools are used (for cutting/shearing large quanties of titanium by
Boiling
Inorganic
Sulfuric acid (H2SO4) machines with sufficient rigidity and high power capacity) and high-speed carbide tool
acids 25
are used (for cutting/shearing small quanties of titanium by machine with low power
10
Boiling
capacity.
25
10
Boiling
Chattering
" The cutting power fluctuates due to chips of " Fully cool down the tool and titanium, in addition to exothermic control by the above
Nitric acid (HNO3)
(Vibration arising from titanium
25 recommended conditions.
saw-tooth form. (This is caused by cutting
65 cutting/shearing is about 10
heat concentrating to the cutting section " Use a cutting/shearing machine with enough rigidity, power and an adjustable broad
Boiling
times as much as that from
and local deformation of titanium.) cutting speed range.
steel cutting/shearing.)
Boiling
10
Acetic acid (CH3COOH)
Boiling
60
Titanium reacts rapidly to oxygen, because of
25
10
Formic acid (HCOOH) its active metal. (Formed titanium work never
Clean the cutting and shearing machines periodically to prevent chips from being
Boiling
Organic 30
burns, but cutting chips and polishing
Chips burning deposited. Use dry sand, common dry salt, graphite powder and metal extinguisher as fire
acids
25
10
compound could ignite from welding and
extinguishing agents /extinguishers.
Oxalic acid ((COOH) 2)
grinding sparks or strong impact.)
60
25 No data available
Boiling
10
Lactic acid (CH3CH (OH) COOH)
Boiling
85
100
10
Caustic soda (NaOH)
Boiling
40
Alkalis
Boiling
5
Potassium carbonate (K2CO3)
Boiling
20
25
Sodium chloride (NaCl) 25
Boiling
Table 6:Tool materials recommended for titanium machining
25
Ammonium chloride (NH4Cl)
40
Boiling
Tool material
JIS tool material codes
Boiling
Inorganic 20
Zinc chloride (ZnCI2)
chlorides Class-K
K01, K05, K10 , K20 , K30, K40
Boiling
50
Tungsten carbide
25
Class-M
M10, M20, M30 , M40
Magnesium chloride (MgCl2)
42
Boiling
V-based
SKH10 , SKH57, SKH54
25
Ferric chloride (FeCl3)
30
Boiling
Mo-based
High-speed steel SKH7, SKH9, SKH52, SKH53, SKH55, SKH56
25
Sodium sulfate (Na2SO4)
20
Powdered high-speed steel
KHA
Boiling
25
Diamond
Man-made diamond, natural diamond
Sodium sulfide (Na2S) 10
Boiling
Inorganic
Material types used frequently
salts
5 25
Sodium chlorite (NaOCl)
15 25
25
Sodium carbonate (Na2CO3)
30
Boiling
Methyl alcohol (CH3OH) 25
95
Carbon tetrachloride (CCl4) Boiling
Organic 100
compounds
Phenol (C6H5OH) 25
Saturat
Formaldehyde (HCHO) Boiling
37
(1) Cutting (2) Shearing
25
Dry
Chlorine (Cl2)
25
Humid
25
Dry
Gases
Hydrogen sulfide (H2S)
25
Humid
40
Ammonium (NH3)
100
100
25
Seawater
-
100
Others
80
Naphtha -
180
Degree of corrosion resistance 0.125mm year or less 0.125 0.5mm year 0.5 1.25mm year 1.25mm year or more
Local corrosion such as pitting and crevice corrosion resistance
Table 7:Bending properties of commercially pure titanium sheets - 1 Table 8:Bending properties of commercially pure titanium sheets - 2
Forming temperature (ÚC)
(4t, U-shaped bending) (0.5t, knife edge and tight-contact bending)
Material
0 200 400 600 800
Bending radius (R/t)
Bending Bending 90degree 135degree
Commercially
Material Tight contact
Material
pure
KS50, KS70
direction direction knife edge knife edge
titanium
2.5 2.0 1.0 Tight contact
alloy Ti-5Al-2.5Sn
OK OK OK NG
KS40 T OK OK OK
KS40
OK OK OK NG
KS50 L OK OK OK
alloy Ti-8Al-1Mo-1V
T-bending
OK OK NG NG
KS60 T OK OK NG
- alloy Ti-6Al-4V KS50
OK NG NG NG
KS70 L OK OK NG
alloy Ti-15Mo-5Zr-3Al
: Medium forming : Severe forming
Fig.13:Forming temperature ranges for commercially pure titanium and
titanium alloys
Table 9:In-plane anisotropy in bending of commercially pure titanium sheets Table 10:Bending properties of Ti-15V-3Cr-3Sn-3AI alloy sheets
Bending properties
105degree
Thickness Bending 90degree 135degree Tight
Thickness
Material Bending method
(mm) direction knife edge knife edge contact
R=2t
(mm)
T-bending L-bending
135degree knife edge closely contact T OK OK OK NG
KS40 4 OK NG
0.5
135degree knife edge L OK OK OK NG
kS50 4 OK NG
90degree knife edge T OK OK NG NG
KS60 3 OK NG
(1) Bending
1.0
R=2t, U-shaped bending L OK OK OK NG
KS70 4 OK NG
* The datum of Tables 7 ~10 were all taken from pages 77, 78 and 81 of "Titanium Machining Technology " edited by Japan Titanium Association and issued by NIKKAN KOGYO SHIMBUN.LTD.
Table 11:Stretch formability of commercially pure titanium, titanium alloy and
(2) Press-forming
steel material
Stretch
T-bending
Thickness Erichsen value
forming height
Material
(mm) (mm)
(mm)
Rolling direction
12.1
KS40S 36.2
11.2 35.4
KS40
Commercially
pure 10.3 33.7
KS50
titanium
KS60 1.0 7.5 26.3
6.9
KS70 23.1
L-bending
7.9 27.6
Ti-15V-3Cr-3Sn-3Al
13.0 40.5
SUS304
8.8 29.7
SUS430
0.6
10.1 37.2
Mild steel
Taken from:page 84 of "Titanium Press-forming Technology" edited by Japan Titanium Association
and issued by the NIKKAN KOGYO SHIMBUN.LTD.
and KOBE STEEL's internal technical data
Fig.14:Definition of bending direction
22
Table 13:Representative brazing materials and brazing temperatures
20
Brazing material Brazing temperature (ÚC)
Heated & quenched
18
Ag-3Li
800
16
Ag-7.5Cu-0.2Li
920
1% H2SO4
TIG welding(GTAW) 14
Ag-28Cu-0.2Li
830
Arc welding MIG welding(GMAW)
12
Plasma welding
Annealed material
Electron beam Ag-20Cu-2Ni-0.2Li
920
welding
10
Welding
methods
Ag-20Cu-2Ni-0.4Li
920
Laser welding
8
Spot welding
Ag-9Ga-9Pd
Resistance 900
Seam welding
6
welding
Portion welded under Portion welded under
Flash butt welding
perfectly shielded imperfectly shielded argon gas atmosphere
Ag-27Cu-5Ti
840
Available
4
argon gas atmosphere
joining
Ti-15Cu-15Ni
65% HNO3 Annealed and heated & quenched 930
methods
Fig.18:Appearance of TIG-welded portion of titanium
2
Explosive
Ti-20Zr-20Cu-20Ni
Brazing 890
0
welding
0 0.1 0.2 0.3 0.4 0.5
Pressure Rolling pressure
Ti-25Zr-50Cu
Iron content (%)
890
welding welding
Other
: Annealed : Heat & quenched (simulation of welded portion)
methods
Friction
Diffusion
Fig.16:Effects of welding on corrosion rate of commercially pure titanium
welding
bonding
Mechanical joining (bolting, etc.)
Fig.15:Titanium jointing methods
TIG torch
Shield gas
Table 12:Mechanical properties of titanium thick plate to plate welded joint
After-shield
Base metal Weld Filler
Thickness Tensile Hv Tensile Hv
Material
Stainless wool
strength hardness strength hardness
(mm)
(MPa) (10kg) (MPa) (10kg)
Shield gas
Commercially pure titanium
9 375 145 419 155
(JIS Class-2)
Commercially pure titanium
20 530 185 562 218
(JIS Class-3)
Titanium plate
Ti-0.15Pd
5 401 153 405 178
Back shield
(JIS Class-12)
Tungsten electrode
Welding method: TIG welding
Shield gas
Electrode: same material as base metal ( 2mm)
Fig.17:TIG welding torch and shield jig for titanium plate
Table 14:Representative heat treatment conditions for titanium materials
(1) Welding
Available heat treatment methods
Material
Stress Solution
Annealing Aging
relief treatment
480-595ÚC 650-815ÚC
Commercially pure
- -
titanium 15-240min 15-120min
370-595ÚC 650-790ÚC
- -
Ti-3Al-2.5V
15-240min 30-120min
-
titanium
(2) Brazing
alloy
480-650ÚC 705-870ÚC 900-970ÚC 480-690ÚC
Ti-6Al-4V
60-240min 15-60min 2-90min 2-8hr
790-895ÚC 760-815ÚC 760-815ÚC 480-675ÚC
Ti-15V-3Cr
titanium
30-60min 3-30min 2-30min 2-24hr
-3Sn-3Al
alloy
Taken from: AMS-H-81200 Product shapes: thin plates, thick plates
Fig.19:Furnace for titanium products
Corrosion rate (mm/year)
Ammeter
min
1400 10 30 60 120
ÚC
700ÚC Ti-6Al-4V
DC power
400
1200
Solid lubricated
Ti-6AI-4V
Voltmeter
600ÚC
1000
Gas-nitrided
450
Ti-6AI-4V
Electrolytic vessel
800
Non-lubricated
Electrolyte
WC sprayed Friction distance : 500m
500 Ti-6AI-4V Cathode (AI)
Speed : 83.3mm/sec Anode (Ti)
600
Load : 980N
Fig.25:Schematic diagram of anodizing method
KENI COAT
Ti-6Al-4V
400
550
500ÚC
0 50 100 150 200
Wear (mg)
200
400ÚC
Fig.24:Sliding wear test results of Ti-6AI-4V alloys to which various surface
600
treatments were applied
0
0 20 40 60 80 100 120
Atmospheric oxidizing time (minutes)
650
Fig.20:Relationship between atmospheric oxidizing time and oxide film thickness
700
300 Conforming to the atmospheric oxidizing treatment conditions in Fig.20
Atmospheric oxidizing treatment
Fig.21:Appearance of commercially pure titanium specimens after
atmospheric oxidation
Pink
70ÚC
Green yellow
200 Green
Susceptible to corrosion
2.0
Purple
PdO-TiO2 coated titanium
Yellow
100 Commercially pure titanium
Polishing Blue
Immune to
1.0
Brown
corrosion
Gold treatment
Anodizing
Ti-0.15Pd
0
24 6
Voltage for anode oxidizing (V)
HCI (mass %)
Fig.26:Relationship of anode oxidizing treatment voltage vs titanium oxide
Fig.22:Boundary of active area to passive area of surface treated titanium
film thickness
0
materials in hydrochloric acid solution
02468 10
Fig.27:Appearance of anodized titanium
HCI (mass %)
(The numerals show the applied anodizing voltages)
Fig.23:Corrosion resistance of PdO-TiO2 coated titanium, commercially pure
titanium and Ti-0.15Pd alloy in hydrochloric acid
(2) Surface treatment for wear resistance (3) Surface treatment for surface design
(1) Surface treatment for corrosion resistance
(4) Surface finishing
-7
Oxide film thickness (Å=10 mm)
-7
2
Temperature (ÚC)
Oxide film thickness (Å=10 mm)
Corrosion reduction (mg/cm )


Wyszukiwarka

Podobne podstrony:
1 0 mechanical properties Gentleman
1 1 mechanical properties Yang
Mechanical Properties of Native and Cross linked Type I Collagen Fibrils Yang
Fibrillar Structure and Mechanical Properties of Collagen
mechanical properties of rubber
[42]Oxidative breakage of cellular DNA by plant polyphenols A putative mechanism for anticancer pro
Mechanika Statyka 5 L Murawski
Mechanika Techniczna I Opracowanie 06
DEMONTAŻ MONTAŻ MECHANIZM OPUSZCZANIA SZYBY (PRZÓD)
instrukcja bhp przy poslugiwaniu sie recznymi narzedziami o napedzie mechanicznym przy obrobce metal
4semestr gleboznastwo praktyki z mechaniki gruntow
PropertiesZ
ocena ryzyka dla mechanika
java beans PropertyChangeEvent
Mechanizmy procesy i oddziaływania w fitoremediacji
Mechanika Kwantowa II 05 Bugajski p39
Teoria Drgań Mechanicznych Opracowanie 04

więcej podobnych podstron