lect9 2013 stud


A Posteriori Error Estimation in Finite Element Analysis
Małgorzata Stojek
Cracow University of Technology
April 2013
MStojek (L-53 CUT) Errors in FEA 04/2013 1 / 35
Simulation & Modeling Felippa
Approximation Errors
(a simplif ication of diagrams of Chapter 1)
IDEALIZATION DISCRETIZATION SOLUTION
FEM
Physical Mathematical Discrete Discrete
model model solution
system
Solution error
Discretization + solution error
Modeling + discretization + solution error
VERIFICATION & VALIDATION
errors
(S) !! (W ) H" (G) !! (M)
approximation errors:
S, V Sh, Vh
mesh & basis functions
MStojek (L-53 CUT) Errors in FEA 04/2013 2 / 35
1D Example
Strong & Weak Formulations
(S)
ńł ńł
ł -u,xx +u = x3 - 6x2 + 12 L(u) = f (x)
ł
u(0) = 0 ! u(0) = 0
ół ół
u(5) = 5 u(5) = 5
where
def
"2 "2 "2u
L = - + 1 ! L(u) = - + 1 u = - + u
"x2 "x2 "x2
(W)
ńł
5 5
(v,x u,x +vu)dx = vf dx
ł
ł 0 0
ł
ł
ł
for all v " V0
ł
ł
ł
ł
ół
a(v, u) = b(v)
MStojek (L-53 CUT) Errors in FEA 04/2013 3 / 35
1D Example
Exact Solution & FE Approximation
uex = x3 - 6x2 + 6x
2
uex = 3x2 - 12x + 6
2 2
uex = 6x - 12
mesh: 4 finite elements, h1 = h2 = h4 = 1, h3 = 2
no FE 1 2 3 4
uh(x) 0.938x 6.674 - 5.736x -2.178x - 0.442 14.153x - 65.766
2
uh(x) 0.938 -5.736 -2.178 14.15
2
uh2 (x) 0 0 0 0
MStojek (L-53 CUT) Errors in FEA 04/2013 4 / 35
Exact Solution & Piecewise Linear Approximation
Error Definition
u = x3 - 6x2 + 6x
def
e = u - uh
x 0 1 2 4 5
uh 0 0.938 -4.798 -9.154 5
MStojek (L-53 CUT) Errors in FEA 04/2013 5 / 35
Exact Solution & Piecewise Linear Approximation
First Derivative
20
u'
10
0
1 2 3 4 5
-10
MStojek (L-53 CUT) Errors in FEA 04/2013 6 / 35
Example - Laboratory no 4
-u =x, -u (0)=1, u(2)=0
10 2
uex = -1x3 - x + , uex = -1x2 - 1,
6 3 2
ńł ńł
10 13 -10 13
(-x + 1) + x + = -7
ł ł
3 6 3 6 6
2
uFE = uFE =
ół ół
13
(-x + 2) -13
6 6
4 0.0 0.5 1.0 1.5 2.0
u
-1
u'
3
2
-2
1
0
0.0 0.5 1.0 1.5 2.0
x
-3
MStojek (L-53 CUT) Errors in FEA 04/2013 7 / 35
Function Norms I
Vector norm in vector space
1
p
n
x = |xi |p
"
p
i=1
Definition
Function norm in Lp function space
1
p
f = |f |p d&! < "
p
&!
MStojek (L-53 CUT) Errors in FEA 04/2013 8 / 35
Function Norms II
Definition
inner (scalar) product of real-valued functions
(f , g) = fgd&!
&!
Definition
L2 function norm
f = |f |2 d&! = (f , f )
2
&!
Note
"
"
x = x x = xT x
2
MStojek (L-53 CUT) Errors in FEA 04/2013 9 / 35
Energy "Norm"
Recall weak formulation:
ńł
5 5
ł
(v,x u,x +vu)dx = vf dx
ł
0 0
for all v " V0
ł
ół
a(v, u) = b(v)
Definition
Energy "Norm"  based on bilinear form a (, )
= a (, )
E
Definition
def
For e = u - uh
e = a (e, e)
E
MStojek (L-53 CUT) Errors in FEA 04/2013 10 / 35
Exact Error
Recall: u = x3 - 6x2 + 6x
def
etrue = u - uh
no FE 1 2 3 4
uh(x) 0.938x 6.674 - 5.736x -2.178x - 0.442 14.153x - 65.766
i
etrue 0.850 0.713 1. 944 0.947
5
(u - uh)2 dx
etrue 2.43
0
% = 100% = 100% = 19%
u 5 12.7
(x3 - 6x2 + 6x)2 dx
0
MStojek (L-53 CUT) Errors in FEA 04/2013 11 / 35
A Posteriori Error Estimation
1
two discretization of differing accuracy,
e.g. h halving meshh & meshh/2;
2
element residual methods;
3
recovery-based methods;
4
. . .
MStojek (L-53 CUT) Errors in FEA 04/2013 12 / 35
A Hierarchical Error Estimator
estimation
etrue = u - uh H" eH = uh/2 - uh
Definition
The local error indicator, i H, for i-element of length h
i H = ei = uh/2 - uh
2
where is a L2 norm, i.e.
i H = (uh/2 - uh)2 d&!
eli
Definition
eH
global relative error estimation  100%
uh/2
MStojek (L-53 CUT) Errors in FEA 04/2013 13 / 35
A Hierarchical Error Estimator I
1D Example
x 0 0.5 1 1.5 2 3 4 4.5 5
uh 0 0.469 0.938 -1.930 -4.798 -6.975 -9.154 -2.077 5
uh/2 0 1.647 1.000 -1.179 -4.138 -9.324 -8.299 -3.543 5
uh/2-uh 0 1.178 0.062 0.751 0.660 -2.348 0.855 -1.467 0
MStojek (L-53 CUT) Errors in FEA 04/2013 14 / 35
A Hierarchical Error Estimator II
1D Example
uh/2-uh 0 1.178 0.062 0.751 0.660 -2.348 0.855 -1.467 0
H = (uh/2 - uh)2 dx
i
eli
no FE 1 2 3 4
H 0.689 0.593 1.697 0.794
i
MStojek (L-53 CUT) Errors in FEA 04/2013 15 / 35
A Hierarchical Error Estimator III
1D Example
4
5
eH =
(uh/2 - uh)2 dx = H 2 = 2.082
"
i
0
i=1
5
uh/2 = (uh/2)2 dx = 12. 35
0
eH
100% = 16.9%
uh/2
Recall:
no FE 1 2 3 4
i
etrue 0.850 0.713 1. 944 0.947
5
(u - uh)2 dx
etrue 2.43
0
% = 100% = 100% = 19%
u 5 12.7
(x3 - 6x2 + 6x)2 dx
0
MStojek (L-53 CUT) Errors in FEA 04/2013 16 / 35
A Hierarchical Error Estimator IV
1D Example
0
1 2 3 4 5
-2
uh/2 - uh
0
1 2 3 4 5
-2
true errors
MStojek (L-53 CUT) Errors in FEA 04/2013 17 / 35
A Residual Error Estimator I
Recall (S)
L(u) = f (x)
Definition
Residuum Function
def
R(x) = f (x) - L(uh)
Definition
Global residual error estimator in 2D
2
2 2
eR = h2 R + h1 J
where J stands for the suitable norm of gradient jumps calculated along
all internal element edges & boundary edges with Neumann (gradient) BCs
MStojek (L-53 CUT) Errors in FEA 04/2013 18 / 35
A Residual Error Estimator II
Fact
True error is bounded by residual error
etrue d" C eR
2 2
etrue d" C h2 R + h1 J
where C stands for constant
Fact
In 1D
J =0
etrue d" C h R
MStojek (L-53 CUT) Errors in FEA 04/2013 19 / 35
A Residual Error Estimator III
Definitions
global residual error in 1D
eR = h R
local residual error indicator in 1D
R = h R2dx = h Ri
i
eli
MStojek (L-53 CUT) Errors in FEA 04/2013 20 / 35
A Residual Error Estimator I
1D Example
2
R(x) = f (x) - L(uh) = x3 - 6x2 + 12 - -uh2 + uh
no FE 1 2 3 4
uh(x) 0.938x 6.674 - 5.736x -2.178x - 0.442 14.153x - 65.766
2
uh2 (x) 0 0 0 0
R(x)
x
MStojek (L-53 CUT) Errors in FEA 04/2013 21 / 35
A Residual Error Estimator II
1D Example
"
1
2
R1 = (x3 - 6x2 + 12 - 0.938 29x) dx = 98. 816 = 9. 941
0
4
2
R3 = (x3 - 6x2 + 12 - (-2. 177 9x - 0.441 8)) dx = 11. 231
2
no FE 1 2 3 4
Ri 9. 94 3. 99 11.23 15.8
h 1 1 2 1
R = h Ri 9. 94 3. 99 22.5 15.8
i
R(x)
true error
x
MStojek (L-53 CUT) Errors in FEA 04/2013 22 / 35
Internal Forces Recovery
"Mechanical" Postprocessing
RECALL:
Kede = Fe = Fe + We
q
ł ł
Q1
ł ł
M1
ł ł
We = = Kede - Fe
q
ł łł
Q2
M2
M1!Q1 [beam element] !Q2 M2
exact values for:
B-E beam, C1 Hermite polynomials,
"4
L = , constant bending rigidity, EI =const,
"x4
MStojek (L-53 CUT) Errors in FEA 04/2013 23 / 35
Internal Forces Recovery
Direct Finite Element Postprocessing
local approximation
we(x) = Nede
d2Ne
curvature-displacement matrix, Be =
dx2
ł ł
w1
ł ł
d2we(x) e e e e 1
d2N1 d2N2 d2N3 d2N4
ł ł
= = Bede
ł łł
dx2 dx2 dx2 dx2
w2
dx2
2
Internal Generalized Forces
2 2
d2we(x)
for =-w
Me(x) = EI = -EI = -EIBede
dx2
" "
Qe(x) = (EI) = Me(x)
"x "x
MStojek (L-53 CUT) Errors in FEA 04/2013 24 / 35
Gradient Recovery
1D Example
20
10
0
1 2 3 4 5
-10
2
uex = 3x2 - 12x + 6
no FE 1 2 3 4
2
uh(x) 0.938 -5.736 -2.178 14.15
MStojek (L-53 CUT) Errors in FEA 04/2013 25 / 35
Construction of Smoothed Gradient I
Piecewise Linear Approximation in 1D
Find element centroids (Gauss points for linear approximation)
20
10
0
1 2 3 4 5
-10
MStojek (L-53 CUT) Errors in FEA 04/2013 26 / 35
Construction of Smoothed Gradient II
Piecewise Linear Approximation in 1D
2
Find smoothed values at internal nodes, uh(xnode)
20
10
0
1 2 3 4 5
-10
MStojek (L-53 CUT) Errors in FEA 04/2013 27 / 35
Construction of Smoothed Gradient III
Piecewise Linear Approximation in 1D
2
Linear piecewise interpolation, uh, from nodal values
20
10
0
1 2 3 4 5
-10
MStojek (L-53 CUT) Errors in FEA 04/2013 28 / 35
Construction of Smoothed Gradient IV
Piecewise Linear Approximation in 1D
Extrapolation of boundary values
20
10
0
1 2 3 4 5
-10
MStojek (L-53 CUT) Errors in FEA 04/2013 29 / 35
20
10
0
1 2 3 4 5
-10
no FE 1 2 3 4
uh(x) 0.938x 6.674-5.736x -2.178x-0.442 14.153x-65.766
2
uh(x) 0.938 -5.736 -2.178 14.15
2
uh(x) 4.275-6.674x -2.151x-0.248 6.628x-17.806 10.885x-34.834
MStojek (L-53 CUT) Errors in FEA 04/2013 30 / 35
A Recovery Based Error Estimator
Definition
The local error indicator, S, for i-element
i
def
2 2
2 2
S = uh-uh = (uh-uh)2 dx
i
eli
Definition
The global error estimator based on gradient smoothing
2 2
2 2
eS = uh-uh 2 dx = S
"
i
&!
i
eS
100%
2
uh
MStojek (L-53 CUT) Errors in FEA 04/2013 31 / 35
Smoothing Error Estimator
1D Example
10
0
1 2 3 4 5
-10
2 2
uh-uh
x 0 1- 1+ 2- 2+ 4- 4+ 5
2
uh(x) 0.938 0.938 -5.736 -5.736 -2.178 -2.178 14.15 14.15
2
uh(x) 4.275 -2.399 -2.399 -4.55 -4.55 8.706 8.706 19.591
2 2
uh-uh 3.34 -3.34 3.34 1.19 -2.37 10.89 -5.44 5.44
MStojek (L-53 CUT) Errors in FEA 04/2013 32 / 35
x 0 1- 1+ 2- 2+ 4- 4+ 5
2 2
uh-uh 3.34 -3.34 3.34 1.19 -2.37 10.89 -5.44 5.44
10
0
1 2 3 4 5
-10
2
2 2 2 2
no FE uh-uh S = (uh-uh)2 dx S
i i
eli
1 3.3367 - 6.674x 3.71 1.93
2 5.4878 - 2.151x 5.50 2.35
3 6.628x - 15.628 65.51 8.09
4 10.885x - 48.987 9.87 3.14
2 "
eS = 84.60, eS = 84.60 = 9.20
MStojek (L-53 CUT) Errors in FEA 04/2013 33 / 35
x 0 1 2 4 5
2
uh(x) 4.275 -2.399 -4.55 8.706 19.591
20
10
0
1 2 3 4 5
-10
no FE 1 2 3 4
2
uh(x) 4.275 - 6.674x - 2.151x - 0.248 6.628x - 17.806 10.885x - 34.834
2
uh 2 4. 60 12.46 37.92 210.05
(i)
5
"
2 2 2
uh 2 = uh 2 dx = 265.02, uh = 265.02 = 16.28
0
eS
9.20
100% = 100% = 57%
2
uh 16. 289
MStojek (L-53 CUT) Errors in FEA 04/2013 34 / 35
u'
h1
u'h1- u'h2
y u'h2
h1 h2
similar triangles:
2 2
uh1 - uh2
y h2
2 2
= y = uh1 - uh2
h2 h1+h2
h1 + h2
2 2
smoothed nodal value:
2
uh = uh2 + y
h2 h1
2 2
uh = uh1 h1+h2 + uh2 h1+h2
2 2
uh1 + uh2
h1 = h2 uh =
2
MStojek (L-53 CUT) Errors in FEA 04/2013 35 / 35


Wyszukiwarka

Podobne podstrony:
hyperlipidemie STUD 2013 mat 1
Filozofia religii cwiczenia dokladne notatki z zajec (2012 2013) [od Agi]
W 4 zadanie wartswa 2013
Zagadnienia z fizyki Technologia Chemiczna PolSl 2013
klucze office 2013
08 stud
Przechowalnictwo pytania 2013 1
Podstawy diagnozowania pedagogicznego Pedagogika S 2012 2013
test zawodowy probny 2013 14
TEST 2013 2014 Wojewodzki Konkurs Fizyczny etap rejonowy
wyklad 7 zap i, 11 2013
4 Sieci komputerowe 04 11 05 2013 [tryb zgodności]

więcej podobnych podstron