af inet c (2)


net/ipv4/af_inet.c /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * AF_INET protocol family socket handler. * * Version: @(#)af_inet.c (from sock.c) 1.0.17 06/02/93 * * Authors: Ross Biro, <bir7@leland.Stanford.Edu> * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, <flla@stud.uni-sb.de> * Alan Cox, <A.Cox@swansea.ac.uk> * * Changes (see also sock.c) * * A.N.Kuznetsov : Socket death error in accept(). * John Richardson : Fix non blocking error in connect() * so sockets that fail to connect * don't return -EINPROGRESS. * Alan Cox : Asynchronous I/O support * Alan Cox : Keep correct socket pointer on sock structures * when accept() ed * Alan Cox : Semantics of SO_LINGER aren't state moved * to close when you look carefully. With * this fixed and the accept bug fixed * some RPC stuff seems happier. * Niibe Yutaka : 4.4BSD style write async I/O * Alan Cox, * Tony Gale : Fixed reuse semantics. * Alan Cox : bind() shouldn't abort existing but dead * sockets. Stops FTP netin:.. I hope. * Alan Cox : bind() works correctly for RAW sockets. Note * that FreeBSD at least was broken in this respect * so be careful with compatibility tests... * Alan Cox : routing cache support * Alan Cox : memzero the socket structure for compactness. * Matt Day : nonblock connect error handler * Alan Cox : Allow large numbers of pending sockets * (eg for big web sites), but only if * specifically application requested. * Alan Cox : New buffering throughout IP. Used dumbly. * Alan Cox : New buffering now used smartly. * Alan Cox : BSD rather than common sense interpretation of * listen. * Germano Caronni : Assorted small races. * Alan Cox : sendmsg/recvmsg basic support. * Alan Cox : Only sendmsg/recvmsg now supported. * Alan Cox : Locked down bind (see security list). * Alan Cox : Loosened bind a little. * Mike McLagan : ADD/DEL DLCI Ioctls * Willy Konynenberg : Transparent proxying support. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <asm/segment.h> #include <asm/system.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <net/ip.h> #include <net/protocol.h> #include <net/arp.h> #include <net/rarp.h> #include <net/route.h> #include <net/tcp.h> #include <net/udp.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/raw.h> #include <net/icmp.h> #include <linux/ip_fw.h> #ifdef CONFIG_IP_MASQUERADE #include <net/ip_masq.h> #endif #ifdef CONFIG_IP_ALIAS #include <net/ip_alias.h> #endif #ifdef CONFIG_BRIDGE #include <net/br.h> #endif #ifdef CONFIG_KERNELD #include <linux/kerneld.h> #endif #define min(a,b) ((a)<(b)?(a):(b)) extern struct proto packet_prot; extern int raw_get_info(char *, char **, off_t, int, int); extern int snmp_get_info(char *, char **, off_t, int, int); extern int afinet_get_info(char *, char **, off_t, int, int); extern int tcp_get_info(char *, char **, off_t, int, int); extern int udp_get_info(char *, char **, off_t, int, int); #ifdef CONFIG_DLCI extern int dlci_ioctl(unsigned int, void*); #endif #ifdef CONFIG_DLCI_MODULE int (*dlci_ioctl_hook)(unsigned int, void *) = NULL; #endif int (*rarp_ioctl_hook)(unsigned int,void*) = NULL; /* * See if a socket number is in use. */ static int sk_inuse(struct proto *prot, int num) { struct sock *sk; for(sk = prot->sock_array[num & (SOCK_ARRAY_SIZE -1 )]; sk != NULL; sk=sk->next) { if (sk->num == num) return(1); } return(0); } /* * Pick a new socket number */ unsigned short get_new_socknum(struct proto *prot, unsigned short base) { static int start=0; /* * Used to cycle through the port numbers so the * chances of a confused connection drop. */ int i, j; int best = 0; int size = 32767; /* a big num. */ struct sock *sk; if (base == 0) base = PROT_SOCK+1+(start & 1023); if (base <= PROT_SOCK) { base += PROT_SOCK+(start & 1023); } /* * Now look through the entire array and try to find an empty ptr. */ for(i=0; i < SOCK_ARRAY_SIZE; i++) { j = 0; sk = prot->sock_array[(i+base+1) &(SOCK_ARRAY_SIZE -1)]; while(sk != NULL) { sk = sk->next; j++; } if (j == 0) { start =(i+1+start )&1023; return(i+base+1); } if (j < size) { best = i; size = j; } } /* Now make sure the one we want is not in use. */ while(sk_inuse(prot, base +best+1)) { best += SOCK_ARRAY_SIZE; } return(best+base+1); } /* * Add a socket into the socket tables by number. */ void put_sock(unsigned short num, struct sock *sk) { struct sock **skp, *tmp; int mask; unsigned long flags; if(sk->type==SOCK_PACKET) return; sk->num = num; sk->next = NULL; num = num &(SOCK_ARRAY_SIZE -1); /* * We can't have an interrupt re-enter here. */ save_flags(flags); cli(); sk->prot->inuse += 1; if (sk->prot->highestinuse < sk->prot->inuse) sk->prot->highestinuse = sk->prot->inuse; if (sk->prot->sock_array[num] == NULL) { sk->prot->sock_array[num] = sk; restore_flags(flags); return; } restore_flags(flags); for(mask = 0xff000000; mask != 0xffffffff; mask = (mask >> 8) | mask) { if ((mask & sk->rcv_saddr) && (mask & sk->rcv_saddr) != (mask & 0xffffffff)) { mask = mask << 8; break; } } /* * add the socket to the sock_array[].. */ skp = sk->prot->sock_array + num; cli(); while ((tmp = *skp) != NULL) { if (!(tmp->rcv_saddr & mask)) break; skp = &tmp->next; } sk->next = tmp; *skp = sk; sti(); } /* * Remove a socket from the socket tables. */ static void remove_sock(struct sock *sk1) { struct sock **p; unsigned long flags; if (sk1->type==SOCK_PACKET) return; if (!sk1->prot) { NETDEBUG(printk("sock.c: remove_sock: sk1->prot == NULL\n")); return; } /* We can't have this changing out from under us. */ save_flags(flags); cli(); p=&(sk1->prot->sock_array[sk1->num & (SOCK_ARRAY_SIZE -1)]); while(*p!=NULL) { if(*p==sk1) { sk1->prot->inuse--; *p=sk1->next; break; } p=&((*p)->next); } restore_flags(flags); } /* * Destroy an AF_INET socket */ void destroy_sock(struct sock *sk) { struct sk_buff *skb; lock_sock(sk); /* just to be safe. */ remove_sock(sk); /* * Now we can no longer get new packets or once the * timers are killed, send them. */ delete_timer(sk); del_timer(&sk->delack_timer); del_timer(&sk->retransmit_timer); /* * Drain any partial frames */ while ((skb = tcp_dequeue_partial(sk)) != NULL) { IS_SKB(skb); kfree_skb(skb, FREE_WRITE); } /* * Cleanup up the write buffer. */ while((skb = skb_dequeue(&sk->write_queue)) != NULL) { IS_SKB(skb); kfree_skb(skb, FREE_WRITE); } /* * Clean up the read buffer. */ while((skb=skb_dequeue(&sk->receive_queue))!=NULL) { /* * This will take care of closing sockets that were * listening and didn't accept everything. */ if (skb->sk != NULL && skb->sk != sk) { IS_SKB(skb); skb->sk->prot->close(skb->sk, 0); } IS_SKB(skb); kfree_skb(skb, FREE_READ); } /* * Now we need to clean up the send head. */ cli(); for(skb = sk->send_head; skb != NULL; ) { struct sk_buff *skb2; /* * We need to remove skb from the transmit queue, * or maybe the arp queue. */ if (skb->next && skb->prev) { IS_SKB(skb); skb_unlink(skb); } skb->dev = NULL; skb2 = skb->link3; kfree_skb(skb, FREE_WRITE); skb = skb2; } sk->send_head = NULL; sk->send_tail = NULL; sk->send_next = NULL; sti(); /* * Now the backlog. */ while((skb=skb_dequeue(&sk->back_log))!=NULL) { /* this should [almost] never happen. */ skb->sk = NULL; kfree_skb(skb, FREE_READ); } /* * Now if it has a half accepted/ closed socket. */ if (sk->pair) { sk->pair->prot->close(sk->pair, 0); sk->pair = NULL; } /* * Now if everything is gone we can free the socket * structure, otherwise we need to keep it around until * everything is gone. */ if (sk->rmem_alloc == 0 && sk->wmem_alloc == 0) { if(sk->opt) kfree(sk->opt); ip_rt_put(sk->ip_route_cache); /* * This one is pure paranoia. I'll take it out * later once I know the bug is buried. */ tcp_cache_zap(); sk_free(sk); } else { /* this should never happen. */ /* actually it can if an ack has just been sent. */ NETDEBUG(printk("Socket destroy delayed (r=%d w=%d)\n", sk->rmem_alloc, sk->wmem_alloc)); sk->destroy = 1; sk->ack_backlog = 0; release_sock(sk); reset_timer(sk, TIME_DESTROY, SOCK_DESTROY_TIME); } } /* * The routines beyond this point handle the behaviour of an AF_INET * socket object. Mostly it punts to the subprotocols of IP to do * the work. */ static int inet_fcntl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk; sk = (struct sock *) sock->data; switch(cmd) { case F_SETOWN: /* * This is a little restrictive, but it's the only * way to make sure that you can't send a sigurg to * another process. */ if (!suser() && current->pgrp != -arg && current->pid != arg) return(-EPERM); sk->proc = arg; return(0); case F_GETOWN: return(sk->proc); default: return(-EINVAL); } } /* * Set socket options on an inet socket. */ static int inet_setsockopt(struct socket *sock, int level, int optname, char *optval, int optlen) { struct sock *sk = (struct sock *) sock->data; if (level == SOL_SOCKET) return sock_setsockopt(sk,level,optname,optval,optlen); if (sk->prot->setsockopt==NULL) return(-EOPNOTSUPP); else return sk->prot->setsockopt(sk,level,optname,optval,optlen); } /* * Get a socket option on an AF_INET socket. */ static int inet_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { struct sock *sk = (struct sock *) sock->data; if (level == SOL_SOCKET) return sock_getsockopt(sk,level,optname,optval,optlen); if(sk->prot->getsockopt==NULL) return(-EOPNOTSUPP); else return sk->prot->getsockopt(sk,level,optname,optval,optlen); } /* * Automatically bind an unbound socket. */ static int inet_autobind(struct sock *sk) { /* We may need to bind the socket. */ if (sk->num == 0) { sk->num = get_new_socknum(sk->prot, 0); if (sk->num == 0) return(-EAGAIN); udp_cache_zap(); tcp_cache_zap(); put_sock(sk->num, sk); sk->dummy_th.source = ntohs(sk->num); } return 0; } /* * Move a socket into listening state. */ static int inet_listen(struct socket *sock, int backlog) { struct sock *sk = (struct sock *) sock->data; if(inet_autobind(sk)!=0) return -EAGAIN; /* We might as well re use these. */ /* * note that the backlog is "unsigned char", so truncate it * somewhere. We might as well truncate it to what everybody * else does.. * Now truncate to 128 not 5. */ if ((unsigned) backlog == 0) /* BSDism */ backlog = 1; if ((unsigned) backlog > SOMAXCONN) backlog = SOMAXCONN; sk->max_ack_backlog = backlog; if (sk->state != TCP_LISTEN) { sk->ack_backlog = 0; sk->state = TCP_LISTEN; } return(0); } /* * Default callbacks for user INET sockets. These just wake up * the user owning the socket. */ static void def_callback1(struct sock *sk) { if(!sk->dead) wake_up_interruptible(sk->sleep); } static void def_callback2(struct sock *sk,int len) { if(!sk->dead) { wake_up_interruptible(sk->sleep); sock_wake_async(sk->socket, 1); } } static void def_callback3(struct sock *sk) { if(!sk->dead && sk->wmem_alloc*2 <= sk->sndbuf) { wake_up_interruptible(sk->sleep); sock_wake_async(sk->socket, 2); } } /* * Create an inet socket. * * FIXME: Gcc would generate much better code if we set the parameters * up in in-memory structure order. Gcc68K even more so */ static int inet_create(struct socket *sock, int protocol) { struct sock *sk; struct proto *prot; int err; sk = sk_alloc(GFP_KERNEL); if (sk == NULL) return(-ENOBUFS); memset(sk,0,sizeof(*sk)); /* Efficient way to set most fields to zero */ /* * Note for tcp that also wiped the dummy_th block for us. */ switch(sock->type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (protocol && protocol != IPPROTO_TCP) { sk_free(sk); return(-EPROTONOSUPPORT); } protocol = IPPROTO_TCP; sk->no_check = TCP_NO_CHECK; prot = &tcp_prot; break; case SOCK_DGRAM: if (protocol && protocol != IPPROTO_UDP) { sk_free(sk); return(-EPROTONOSUPPORT); } protocol = IPPROTO_UDP; sk->no_check = UDP_NO_CHECK; prot=&udp_prot; break; case SOCK_RAW: if (!suser()) { sk_free(sk); return(-EPERM); } if (!protocol) { sk_free(sk); return(-EPROTONOSUPPORT); } prot = &raw_prot; sk->reuse = 1; sk->num = protocol; break; case SOCK_PACKET: if (!suser()) { sk_free(sk); return(-EPERM); } if (!protocol) { sk_free(sk); return(-EPROTONOSUPPORT); } prot = &packet_prot; sk->reuse = 1; sk->num = protocol; break; default: sk_free(sk); return(-ESOCKTNOSUPPORT); } sk->socket = sock; #ifdef CONFIG_TCP_NAGLE_OFF sk->nonagle = 1; #endif sk->type = sock->type; sk->protocol = protocol; sk->allocation = GFP_KERNEL; sk->sndbuf = SK_WMEM_MAX; sk->rcvbuf = SK_RMEM_MAX; sk->rto = TCP_TIMEOUT_INIT; /*TCP_WRITE_TIME*/ sk->cong_window = 1; /* start with only sending one packet at a time. */ sk->priority = 1; sk->state = TCP_CLOSE; /* this is how many unacked bytes we will accept for this socket. */ sk->max_unacked = 2048; /* needs to be at most 2 full packets. */ sk->delay_acks = 1; sk->max_ack_backlog = SOMAXCONN; skb_queue_head_init(&sk->write_queue); skb_queue_head_init(&sk->receive_queue); sk->mtu = 576; sk->prot = prot; sk->sleep = sock->wait; init_timer(&sk->timer); init_timer(&sk->delack_timer); init_timer(&sk->retransmit_timer); sk->timer.data = (unsigned long)sk; sk->timer.function = &net_timer; skb_queue_head_init(&sk->back_log); sock->data =(void *) sk; sk->dummy_th.doff = sizeof(sk->dummy_th)/4; sk->ip_ttl=ip_statistics.IpDefaultTTL; if(sk->type==SOCK_RAW && protocol==IPPROTO_RAW) sk->ip_hdrincl=1; else sk->ip_hdrincl=0; #ifdef CONFIG_IP_MULTICAST sk->ip_mc_loop=1; sk->ip_mc_ttl=1; *sk->ip_mc_name=0; sk->ip_mc_list=NULL; #endif /* * Speed up by setting some standard state for the dummy_th * if TCP uses it (maybe move to tcp_init later) */ sk->dummy_th.ack=1; sk->dummy_th.doff=sizeof(struct tcphdr)>>2; sk->state_change = def_callback1; sk->data_ready = def_callback2; sk->write_space = def_callback3; sk->error_report = def_callback1; if (sk->num) { /* * It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ put_sock(sk->num, sk); sk->dummy_th.source = ntohs(sk->num); } if (sk->prot->init) { err = sk->prot->init(sk); if (err != 0) { destroy_sock(sk); return(err); } } return(0); } /* * Duplicate a socket. */ static int inet_dup(struct socket *newsock, struct socket *oldsock) { return(inet_create(newsock,((struct sock *)(oldsock->data))->protocol)); } /* * The peer socket should always be NULL (or else). When we call this * function we are destroying the object and from then on nobody * should refer to it. */ static int inet_release(struct socket *sock, struct socket *peer) { unsigned long timeout; struct sock *sk = (struct sock *) sock->data; if (sk == NULL) return(0); sk->state_change(sk); /* Start closing the connection. This may take a while. */ #ifdef CONFIG_IP_MULTICAST /* Applications forget to leave groups before exiting */ ip_mc_drop_socket(sk); #endif /* * If linger is set, we don't return until the close * is complete. Otherwise we return immediately. The * actually closing is done the same either way. * * If the close is due to the process exiting, we never * linger.. */ timeout = 0; if (sk->linger) { timeout = ~0UL; if (!sk->lingertime) timeout = jiffies + HZ*sk->lingertime; } if (current->flags & PF_EXITING) timeout = 0; sock->data = NULL; sk->socket = NULL; sk->prot->close(sk, timeout); return(0); } static int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *addr=(struct sockaddr_in *)uaddr; struct sock *sk=(struct sock *)sock->data, *sk2; unsigned short snum = 0 /* Stoopid compiler.. this IS ok */; int chk_addr_ret; /* * If the socket has its own bind function then use it. */ if(sk->prot->bind) return sk->prot->bind(sk,uaddr, addr_len); /* check this error. */ if (sk->state != TCP_CLOSE) return(-EIO); if(addr_len<sizeof(struct sockaddr_in)) return -EINVAL; if(sock->type != SOCK_RAW) { if (sk->num != 0) return(-EINVAL); snum = ntohs(addr->sin_port); #ifdef CONFIG_IP_MASQUERADE /* * The kernel masquerader needs some ports */ if(snum>=PORT_MASQ_BEGIN && snum<=PORT_MASQ_END) return -EADDRINUSE; #endif if (snum == 0) snum = get_new_socknum(sk->prot, 0); if (snum < PROT_SOCK && !suser()) return(-EACCES); } chk_addr_ret = ip_chk_addr(addr->sin_addr.s_addr); #ifdef CONFIG_IP_TRANSPARENT_PROXY /* * Superuser may bind to any address to allow transparent proxying. */ if (addr->sin_addr.s_addr != 0 && chk_addr_ret != IS_MYADDR && chk_addr_ret != IS_MULTICAST && chk_addr_ret != IS_BROADCAST && !suser()) #else if (addr->sin_addr.s_addr != 0 && chk_addr_ret != IS_MYADDR && chk_addr_ret != IS_MULTICAST && chk_addr_ret != IS_BROADCAST) #endif return(-EADDRNOTAVAIL); /* Source address MUST be ours! */ #ifndef CONFIG_IP_TRANSPARENT_PROXY /* * Am I just thick or is this test really always true after the one * above? Just taking the test out appears to be the easiest way to * make binds to remote addresses for transparent proxying work. */ if (chk_addr_ret || addr->sin_addr.s_addr == 0) { #endif /* * We keep a pair of addresses. rcv_saddr is the one * used by get_sock_*(), and saddr is used for transmit. * * In the BSD API these are the same except where it * would be illegal to use them (multicast/broadcast) in * which case the sending device address is used. */ sk->rcv_saddr = addr->sin_addr.s_addr; if(chk_addr_ret==IS_MULTICAST||chk_addr_ret==IS_BROADCAST) sk->saddr = 0; /* Use device */ else sk->saddr = addr->sin_addr.s_addr; #ifndef CONFIG_IP_TRANSPARENT_PROXY } #endif if(sock->type != SOCK_RAW) { /* Make sure we are allowed to bind here. */ cli(); for(sk2 = sk->prot->sock_array[snum & (SOCK_ARRAY_SIZE -1)]; sk2 != NULL; sk2 = sk2->next) { /* * Hash collision or real match ? */ if (sk2->num != snum) continue; /* * Either bind on the port is wildcard means * they will overlap and thus be in error */ if (!sk2->rcv_saddr || !sk->rcv_saddr) { /* * Allow only if both are setting reuse. */ if(sk2->reuse && sk->reuse && sk2->state!=TCP_LISTEN) continue; sti(); return(-EADDRINUSE); } /* * Two binds match ? */ if (sk2->rcv_saddr != sk->rcv_saddr) continue; /* * Reusable port ? */ if (!sk->reuse) { sti(); return(-EADDRINUSE); } /* * Reuse ? */ if (!sk2->reuse || sk2->state==TCP_LISTEN) { sti(); return(-EADDRINUSE); } } sti(); remove_sock(sk); if(sock->type==SOCK_DGRAM) udp_cache_zap(); if(sock->type==SOCK_STREAM) tcp_cache_zap(); put_sock(snum, sk); sk->dummy_th.source = ntohs(sk->num); sk->daddr = 0; sk->dummy_th.dest = 0; } ip_rt_put(sk->ip_route_cache); sk->ip_route_cache=NULL; return(0); } /* * Connect to a remote host. There is regrettably still a little * TCP 'magic' in here. */ static int inet_connect(struct socket *sock, struct sockaddr * uaddr, int addr_len, int flags) { struct sock *sk=(struct sock *)sock->data; int err; sock->conn = NULL; if (sock->state == SS_CONNECTING && tcp_connected(sk->state)) { sock->state = SS_CONNECTED; /* Connection completing after a connect/EINPROGRESS/select/connect */ return 0; /* Rock and roll */ } if (sock->state == SS_CONNECTING && sk->protocol == IPPROTO_TCP && (flags & O_NONBLOCK)) { if(sk->err!=0) return sock_error(sk); return -EALREADY; /* Connecting is currently in progress */ } if (sock->state != SS_CONNECTING) { /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return(-EAGAIN); if (sk->prot->connect == NULL) return(-EOPNOTSUPP); err = sk->prot->connect(sk, (struct sockaddr_in *)uaddr, addr_len); if (err < 0) return(err); sock->state = SS_CONNECTING; } if (sk->state > TCP_FIN_WAIT2 && sock->state==SS_CONNECTING) { sock->state=SS_UNCONNECTED; return sock_error(sk); } if (sk->state != TCP_ESTABLISHED &&(flags & O_NONBLOCK)) return(-EINPROGRESS); cli(); /* avoid the race condition */ while(sk->state == TCP_SYN_SENT || sk->state == TCP_SYN_RECV) { interruptible_sleep_on(sk->sleep); if (current->signal & ~current->blocked) { sti(); return(-ERESTARTSYS); } /* This fixes a nasty in the tcp/ip code. There is a hideous hassle with icmp error packets wanting to close a tcp or udp socket. */ if(sk->err && sk->protocol == IPPROTO_TCP) { sock->state = SS_UNCONNECTED; sti(); return sock_error(sk); /* set by tcp_err() */ } } sti(); sock->state = SS_CONNECTED; if (sk->state != TCP_ESTABLISHED && sk->err) { sock->state = SS_UNCONNECTED; return sock_error(sk); } return(0); } static int inet_socketpair(struct socket *sock1, struct socket *sock2) { return(-EOPNOTSUPP); } /* * Accept a pending connection. The TCP layer now gives BSD semantics. */ static int inet_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk1, *sk2; int err; sk1 = (struct sock *) sock->data; /* * We've been passed an extra socket. * We need to free it up because the tcp module creates * its own when it accepts one. */ if (newsock->data) { struct sock *sk=(struct sock *)newsock->data; newsock->data=NULL; destroy_sock(sk); } if (sk1->prot->accept == NULL) return(-EOPNOTSUPP); /* * Restore the state if we have been interrupted, and then returned. */ if (sk1->pair != NULL ) { sk2 = sk1->pair; sk1->pair = NULL; } else { sk2 = sk1->prot->accept(sk1,flags); if (sk2 == NULL) { return sock_error(sk1); } } newsock->data = (void *)sk2; sk2->sleep = newsock->wait; sk2->socket = newsock; newsock->conn = NULL; if (flags & O_NONBLOCK) return(0); cli(); /* avoid the race. */ while(sk2->state == TCP_SYN_RECV) { interruptible_sleep_on(sk2->sleep); if (current->signal & ~current->blocked) { sti(); sk1->pair = sk2; sk2->sleep = NULL; sk2->socket=NULL; newsock->data = NULL; return(-ERESTARTSYS); } } sti(); if (sk2->state != TCP_ESTABLISHED && sk2->err > 0) { err = sock_error(sk2); destroy_sock(sk2); newsock->data = NULL; return err; } newsock->state = SS_CONNECTED; return(0); } /* * This does both peername and sockname. */ static int inet_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sockaddr_in *sin=(struct sockaddr_in *)uaddr; struct sock *sk; sin->sin_family = AF_INET; sk = (struct sock *) sock->data; if (peer) { if (!tcp_connected(sk->state)) return(-ENOTCONN); sin->sin_port = sk->dummy_th.dest; sin->sin_addr.s_addr = sk->daddr; } else { __u32 addr = sk->rcv_saddr; if (!addr) { addr = sk->saddr; if (!addr) addr = ip_my_addr(); } sin->sin_port = sk->dummy_th.source; sin->sin_addr.s_addr = addr; } *uaddr_len = sizeof(*sin); return(0); } static int inet_recvmsg(struct socket *sock, struct msghdr *ubuf, int size, int noblock, int flags, int *addr_len ) { struct sock *sk = (struct sock *) sock->data; if (sk->prot->recvmsg == NULL) return(-EOPNOTSUPP); if(sk->err) return sock_error(sk); /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return(-EAGAIN); return(sk->prot->recvmsg(sk, ubuf, size, noblock, flags,addr_len)); } static int inet_sendmsg(struct socket *sock, struct msghdr *msg, int size, int noblock, int flags) { struct sock *sk = (struct sock *) sock->data; if (sk->shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 1); return(-EPIPE); } if (sk->prot->sendmsg == NULL) return(-EOPNOTSUPP); if(sk->err) return sock_error(sk); /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return -EAGAIN; return(sk->prot->sendmsg(sk, msg, size, noblock, flags)); } static int inet_shutdown(struct socket *sock, int how) { struct sock *sk=(struct sock*)sock->data; /* * This should really check to make sure * the socket is a TCP socket. (WHY AC...) */ how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 1->2 bit 2 snds. 2->3 */ if ((how & ~SHUTDOWN_MASK) || how==0) /* MAXINT->0 */ return(-EINVAL); if (sock->state == SS_CONNECTING && sk->state == TCP_ESTABLISHED) sock->state = SS_CONNECTED; if (!sk || !tcp_connected(sk->state)) return(-ENOTCONN); sk->shutdown |= how; if (sk->prot->shutdown) sk->prot->shutdown(sk, how); return(0); } static int inet_select(struct socket *sock, int sel_type, select_table *wait ) { struct sock *sk=(struct sock *) sock->data; if (sk->prot->select == NULL) { return(0); } return(sk->prot->select(sk, sel_type, wait)); } /* * ioctl() calls you can issue on an INET socket. Most of these are * device configuration and stuff and very rarely used. Some ioctls * pass on to the socket itself. * * NOTE: I like the idea of a module for the config stuff. ie ifconfig * loads the devconfigure module does its configuring and unloads it. * There's a good 20K of config code hanging around the kernel. */ static int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk=(struct sock *)sock->data; int err; int pid; switch(cmd) { case FIOSETOWN: case SIOCSPGRP: err=verify_area(VERIFY_READ,(int *)arg,sizeof(long)); if(err) return err; pid = get_user((int *) arg); /* see inet_fcntl */ if (current->pid != pid && current->pgrp != -pid && !suser()) return -EPERM; sk->proc = pid; return(0); case FIOGETOWN: case SIOCGPGRP: err=verify_area(VERIFY_WRITE,(void *) arg, sizeof(long)); if(err) return err; put_fs_long(sk->proc,(int *)arg); return(0); case SIOCGSTAMP: if(sk->stamp.tv_sec==0) return -ENOENT; err=verify_area(VERIFY_WRITE,(void *)arg,sizeof(struct timeval)); if(err) return err; memcpy_tofs((void *)arg,&sk->stamp,sizeof(struct timeval)); return 0; case SIOCADDRT: case SIOCDELRT: return(ip_rt_ioctl(cmd,(void *) arg)); case SIOCDARP: case SIOCGARP: case SIOCSARP: case OLD_SIOCDARP: case OLD_SIOCGARP: case OLD_SIOCSARP: return(arp_ioctl(cmd,(void *) arg)); case SIOCDRARP: case SIOCGRARP: case SIOCSRARP: #ifdef CONFIG_KERNELD if (rarp_ioctl_hook == NULL) request_module("rarp"); #endif if (rarp_ioctl_hook != NULL) return(rarp_ioctl_hook(cmd,(void *) arg)); case SIOCGIFCONF: case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCSIFLINK: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCSIFMAP: case SIOCGIFMAP: case SIOCSIFSLAVE: case SIOCGIFSLAVE: return(dev_ioctl(cmd,(void *) arg)); case SIOCGIFBR: case SIOCSIFBR: #ifdef CONFIG_BRIDGE return(br_ioctl(cmd,(void *) arg)); #else return -ENOPKG; #endif case SIOCADDDLCI: case SIOCDELDLCI: #ifdef CONFIG_DLCI return(dlci_ioctl(cmd, (void *) arg)); #endif #ifdef CONFIG_DLCI_MODULE #ifdef CONFIG_KERNELD if (dlci_ioctl_hook == NULL) request_module("dlci"); #endif if (dlci_ioctl_hook) return((*dlci_ioctl_hook)(cmd, (void *) arg)); #endif return -ENOPKG; default: if ((cmd >= SIOCDEVPRIVATE) && (cmd <= (SIOCDEVPRIVATE + 15))) return(dev_ioctl(cmd,(void *) arg)); if (sk->prot->ioctl==NULL) return(-EINVAL); return(sk->prot->ioctl(sk, cmd, arg)); } /*NOTREACHED*/ return(0); } #ifdef CONFIG_IP_TRANSPARENT_PROXY /* * Some routines for the for loop in get_sock which sometimes needs to walk * two linked lists in sequence. Could use macros as well. * Does anyone know a nicer way to code this? */ static __inline__ struct sock *secondlist(unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { if (hpnum && s == NULL && (*pfirstpass)-- ) return prot->sock_array[hpnum & (SOCK_ARRAY_SIZE - 1)]; else return s; } static __inline__ struct sock *get_sock_loop_init(unsigned short hnum, unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)]; return secondlist(hpnum, s, pfirstpass, prot); } static __inline__ struct sock *get_sock_loop_next(unsigned short hnum, unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { s = s->next; return secondlist(hpnum, s, pfirstpass, prot); } #endif /* * This routine must find a socket given a TCP or UDP header. * Everything is assumed to be in net order. * * We give priority to more closely bound ports: if some socket * is bound to a particular foreign address, it will get the packet * rather than somebody listening to any address.. */ struct sock *get_sock(struct proto *prot, unsigned short num, unsigned long raddr, unsigned short rnum, unsigned long laddr, unsigned long paddr, unsigned short pnum) { struct sock *s = 0; struct sock *result = NULL; int badness = -1; unsigned short hnum; #ifdef CONFIG_IP_TRANSPARENT_PROXY unsigned short hpnum; int firstpass = 1; #endif hnum = ntohs(num); #ifdef CONFIG_IP_TRANSPARENT_PROXY hpnum = ntohs(pnum); #endif /* * SOCK_ARRAY_SIZE must be a power of two. This will work better * than a prime unless 3 or more sockets end up using the same * array entry. This should not be a problem because most * well known sockets don't overlap that much, and for * the other ones, we can just be careful about picking our * socket number when we choose an arbitrary one. */ #ifdef CONFIG_IP_TRANSPARENT_PROXY for(s = get_sock_loop_init(hnum, hpnum, s, &firstpass, prot); s != NULL; s = get_sock_loop_next(hnum, hpnum, s, &firstpass, prot)) #else for(s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)]; s != NULL; s = s->next) #endif { int score = 0; #ifdef CONFIG_IP_TRANSPARENT_PROXY /* accept the addressed port or the redirect (proxy) port */ if (s->num != hnum && (hpnum == 0 || s->num != hpnum)) #else if (s->num != hnum) #endif continue; if(s->dead && (s->state == TCP_CLOSE)) continue; /* local address matches? */ if (s->rcv_saddr) { #ifdef CONFIG_IP_TRANSPARENT_PROXY /* * If this is redirected traffic, it must either * match on the redirected port/ip-address or on * the actual destination, not on a mixture. * There must be a simpler way to express this... */ if (hpnum ? ((s->num != hpnum || s->rcv_saddr != paddr) && (s->num != hnum || s->rcv_saddr != laddr)) : (s->rcv_saddr != laddr)) #else if (s->rcv_saddr != laddr) #endif continue; score++; } /* remote address matches? */ if (s->daddr) { if (s->daddr != raddr) continue; score++; } /* remote port matches? */ if (s->dummy_th.dest) { if (s->dummy_th.dest != rnum) continue; score++; } /* perfect match? */ #ifdef CONFIG_IP_TRANSPARENT_PROXY if (score == 3 && s->num == hnum) #else if (score == 3) #endif return s; /* no, check if this is the best so far.. */ if (score <= badness) continue; #ifdef CONFIG_IP_TRANSPARENT_PROXY /* don't accept near matches on the actual destination * port with IN_ADDR_ANY for redirected traffic, but do * allow explicit remote address listens. (disputable) */ if (hpnum && s->num != hpnum && !s->rcv_saddr) continue; #endif result = s; badness = score; } return result; } /* * Deliver a datagram to raw sockets. */ struct sock *get_sock_raw(struct sock *sk, unsigned short num, unsigned long raddr, unsigned long laddr) { struct sock *s; s=sk; for(; s != NULL; s = s->next) { if (s->num != num) continue; if(s->dead && (s->state == TCP_CLOSE)) continue; if(s->daddr && s->daddr!=raddr) continue; if(s->rcv_saddr && s->rcv_saddr != laddr) continue; return(s); } return(NULL); } #ifdef CONFIG_IP_MULTICAST /* * Deliver a datagram to broadcast/multicast sockets. */ struct sock *get_sock_mcast(struct sock *sk, unsigned short num, unsigned long raddr, unsigned short rnum, unsigned long laddr) { struct sock *s; unsigned short hnum; hnum = ntohs(num); /* * SOCK_ARRAY_SIZE must be a power of two. This will work better * than a prime unless 3 or more sockets end up using the same * array entry. This should not be a problem because most * well known sockets don't overlap that much, and for * the other ones, we can just be careful about picking our * socket number when we choose an arbitrary one. */ s=sk; for(; s != NULL; s = s->next) { if (s->num != hnum) continue; if(s->dead && (s->state == TCP_CLOSE)) continue; if(s->daddr && s->daddr!=raddr) continue; if (s->dummy_th.dest != rnum && s->dummy_th.dest != 0) continue; if(s->rcv_saddr && s->rcv_saddr != laddr) continue; return(s); } return(NULL); } #endif static struct proto_ops inet_proto_ops = { AF_INET, inet_create, inet_dup, inet_release, inet_bind, inet_connect, inet_socketpair, inet_accept, inet_getname, inet_select, inet_ioctl, inet_listen, inet_shutdown, inet_setsockopt, inet_getsockopt, inet_fcntl, inet_sendmsg, inet_recvmsg }; extern unsigned long seq_offset; /* * Called by socket.c on kernel startup. */ void inet_proto_init(struct net_proto *pro) { struct inet_protocol *p; int i; printk("Swansea University Computer Society TCP/IP for NET3.034\n"); /* * Tell SOCKET that we are alive... */ (void) sock_register(inet_proto_ops.family, &inet_proto_ops); seq_offset = CURRENT_TIME*250; /* * Add all the protocols. */ for(i = 0; i < SOCK_ARRAY_SIZE; i++) { tcp_prot.sock_array[i] = NULL; udp_prot.sock_array[i] = NULL; raw_prot.sock_array[i] = NULL; } tcp_prot.inuse = 0; tcp_prot.highestinuse = 0; udp_prot.inuse = 0; udp_prot.highestinuse = 0; raw_prot.inuse = 0; raw_prot.highestinuse = 0; printk("IP Protocols: "); for(p = inet_protocol_base; p != NULL;) { struct inet_protocol *tmp = (struct inet_protocol *) p->next; inet_add_protocol(p); printk("%s%s",p->name,tmp?", ":"\n"); p = tmp; } /* * Set the ARP module up */ arp_init(); /* * Set the IP module up */ ip_init(); /* * Set the ICMP layer up */ icmp_init(&inet_proto_ops); /* * Set the firewalling up */ #if defined(CONFIG_IP_ACCT)||defined(CONFIG_IP_FIREWALL)|| \ defined(CONFIG_IP_MASQUERADE) ip_fw_init(); #endif /* * Initialise the multicast router */ #if defined(CONFIG_IP_MROUTE) ip_mr_init(); #endif /* * Initialise AF_INET alias type (register net_alias_type) */ #if defined(CONFIG_IP_ALIAS) ip_alias_init(); #endif #ifdef CONFIG_INET_RARP rarp_ioctl_hook = rarp_ioctl; #endif /* * Create all the /proc entries. */ #ifdef CONFIG_PROC_FS #ifdef CONFIG_INET_RARP proc_net_register(&(struct proc_dir_entry) { PROC_NET_RARP, 4, "rarp", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, rarp_get_info }); #endif /* RARP */ proc_net_register(&(struct proc_dir_entry) { PROC_NET_RAW, 3, "raw", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, raw_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_SNMP, 4, "snmp", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, snmp_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_SOCKSTAT, 8, "sockstat", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, afinet_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_TCP, 3, "tcp", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, tcp_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_UDP, 3, "udp", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, udp_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_ROUTE, 5, "route", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, rt_get_info }); proc_net_register(&(struct proc_dir_entry) { PROC_NET_RTCACHE, 8, "rt_cache", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, rt_cache_get_info }); #endif /* CONFIG_PROC_FS */ }

Wyszukiwarka

Podobne podstrony:
af inet c
spr AF
af lbbb
f af e2
af?st
AF wykład 1
Tamron AF 55 200mm f4 5,6 DiII
af unix c (2)
INET ADDRESS MIB
harm TSiTR 2014lato AF
kalibracja af
af chb

więcej podobnych podstron