Alg S1 09


z
z2 = -3 + 4i
(3 + 2i)z = 4 + 6i
Ä„ Ä„
u = 2(cos + i sin )50
15 15
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z|
z = 2 + 3i
Å„Å‚
x1 + 3x2 - x3 + 2x4 = 4
òÅ‚
2x1 + 6x2 - 3x3 + 2x4 = 3
ół
-x1 - 3x2 + 3x3 + 2x4 = 6
Å„Å‚
x1 + 2x2 - x3 + 2x4 = 0
òÅ‚
3x1 + 6x2 - x3 - 2x4 = 0
ół
-x1 - 2x2 + 2x4 = 0
(0, 1, 4, 1)
V = Lin {(1, -1, 4), (2, -3, 3), (-1, 3, 6)}
z
z2 = -5 - 12i
(3 - 4i)z = 7 - 6i
Ä„ Ä„
u = 2(cos + i sin )70
15 15
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = 1 + 3i
Å„Å‚
x1 + 2x2 + 3x3 - x4 = 5
òÅ‚
2x1 + 5x2 + 6x3 + 2x4 = 9
ół
x1 + 3x2 + 3x3 + 3x4 = 4
Å„Å‚
x1 + 2x2 - x3 + 2x4 = 0
òÅ‚
2x1 + 4x2 - 2x3 - x4 = 0
ół
-x1 - 2x2 + x3 + 2x4 = 0
(2, 1, 4, 1)
V = Lin {(1, -1, 1), (3, -1 - 3), (-1, 0, 2)}
z
z2 = -5 - 12i
(5 - 2i) z = 7 - 6i
Ä„ Ä„
u = 2(cos + i sin )70
15 15
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = 2 - 3i
Å„Å‚
x1 + 5x2 + 3x3 - x4 = 5
òÅ‚
2x1 + 10x2 + 4x3 - 6x4 = 1
ół
-x1 - 5x2 - x3 + 5x4 = 4
Å„Å‚
x1 + 2x2 - 3x3 + 2x4 = 0
òÅ‚
2x1 + 4x2 - 6x3 + x4 = 0
ół
-x1 - 2x2 + 3x3 + 2x4 = 0
(3, 3, 3, 0)
V = Lin {(1, -1, 1), (2, -2, -3), (-1, 1, 3)}
z
z2 = -5 + 12i
(3 - 2i) z = 5 - 6i
Ä„ Ä„
z = 3(cos + i sin )42
24 24
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = 1 - 5i
Å„Å‚
x1 + 2x2 - 3x3 + 2x4 = 1
òÅ‚
2x1 + 4x2 - 6x3 + x4 = -1
ół
-x1 - 2x2 + 3x3 + 2x4 = 3
Å„Å‚
x1 + 2x2 - x3 + 2x4 = 0
òÅ‚
3x1 + 6x2 - x3 - 2x4 = 0
ół
-x1 - 2x2 + 2x4 = 0
(0, 1, 4, 1)
V = Lin {(1, -3, 1), (2, -6, -1), (-1, 3, 3)}
z
z2 = -8 - 6i
(3 - 4i) z = 5 - 5i
Ä„ Ä„
u = 2(cos + i sin )70
15 15
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = -2 + 3i
Å„Å‚
x1 + 3x2 + 3x3 - x4 = 2
òÅ‚
2x1 + 6x2 + 4x3 + 2x4 = 6
ół
x1 + 3x2 + x3 + 3x4 = 4
Å„Å‚
x1
òÅ‚ - 2x2 - 3x3 + 2x4 = 0
2x1 - 4x2 - 6x3 + x4 = 0
ół
-x1 + 2x2 + 3x3 + 2x4 = 0
(1, 2, -1, 0)
V = Lin {(1, 3, 2), (2, 4, 6), (1, 1, 4)}
z
z2 = 5 - 12i
(2 - 3i) z = 3 - 6i
Ä„ Ä„
u = 3(cos + i sin )32
12 12
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = -3 + 2i
Å„Å‚
x1
òÅ‚ - 2x2 - 3x3 + 2x4 = 1
2x1 - 4x2 - 6x3 + x4 = -1
ół
-x1 + 2x2 + 3x3 + 2x4 = 3
Å„Å‚
x1
òÅ‚ - 3x2 + 3x3 - x4 = 0
2x1 - 6x2 + 4x3 + 2x4 = 0
ół
x1 - 3x2 + 2x3 + x4 = 0
(-2, 1, 2, 1)
V = Lin {1, -3, 1), (2, - - 6, -1), (-1, 3, 3)}
z
z2 = -6 + 8i
(4 + 5i) z = 5 - 4i
Ä„ Ä„
u = 3(cos + i sin )100
75 75
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = 3 + 3i
Å„Å‚
x1
òÅ‚ - 3x2 + 3x3 - x4 = 2
2x1 - 6x2 + 4x3 + 2x4 = 6
ół
x1 - 3x2 + 2x3 + x4 = 3
Å„Å‚
x1 + 4x2 + 3x3 - x4 = 0
òÅ‚
2x1 + 8x2 + 4x3 + 2x4 = 0
ół
x1 + 4x2 + x3 + 3x4 = 0
(3, -2, 2, 1)
V = Lin {(1, 3, 2), (2, 5, 5), (1, 2, 3)}
z
z2 = -3 + 4i
(3 + 4i) z = 4 - 3i
Ä„ Ä„
u = 3(cos + i sin )32
12 12
u = 2z + 3 z + i - 5Re(2z + 1) + Im(z - i) + |z| z = 2 - 2i
Å„Å‚
x1 + 4x2 + 3x3 - x4 = 5
òÅ‚
2x1 + 8x2 + 4x3 + 2x4 = 9
ół
x1 + 4x2 + x3 + 3x4 = 4
Å„Å‚
x1 + 2x2 - x3 + 2x4 = 0
òÅ‚
3x1 + 6x2 - x3 - 2x4 = 0
ół
-x1 - 2x2 + 2x4 = 0
(0, 1, 4, 1)
V = Lin {(1, 3, 5), (2, 4, 9), (1, 1, 4)}


Wyszukiwarka

Podobne podstrony:
ALG GEOM
29 Konstr betonowe V S1
23 eng alg
moje genetyczny alg
712[06] S1 02 Montowanie systemów ścian działowych
Specjalizacja technolog robótq3[06] S1 u
S1?5 INF Fizyka
m7,s1
MK1 S1 L1 przykład
Trawka (Weeds) S1 odc 1 Napisy PL
21 Materiały S1 część wspólna
W ALG grupa ilorazowa

więcej podobnych podstron