Przygotowali: J. Michalak, M. Zygmanowski
Elektronika i techniki mikroprocesorowe
Instrukcja do zajęć laboratoryjnych
Część: Technika Cyfrowa
Liczba zajęć: 3 + zaliczające
Celem zajęć jest zapoznanie się z podstawowymi elementami wykorzystywanymi w
technice cyfrowej, takimi jak: bramki logiczne, sumatory, przerzutniki, liczniki oraz
zapoznanie się z podstawowymi metodami projektowania układów cyfrowych.
Wprowadzenie
W dzisiejszym świecie układy cyfrowe i ich pochodne wykorzystywane są praktycznie w
każdej dziedzinie gospodarki do sterowania procesami produkcyjnymi, przetwarzania,
przesyłu danych itp. W porównaniu z układami analogowymi, posiadają one następujące
zalety: większa odporność na zakłócenia, brak efektu starzenia się elementów, większa
elastyczność i możliwości układów.
Technika cyfrowa bazuje na sygnałach cyfrowych, czyli na sygnałach nieciągłych zarówno
w czasie jak i co do wartości. Duża odporność na zakłócenia tych sygnałów wynika z faktu, że
mogą one przyjmować tylko dwa stany, którym możemy przyporządkować dwie wartości
logiczne (prawda-1 i fałsz-0). Te dwa stany logiczne odpowiadają dwóm zakresom napięć
przykładowo w technice TTL fałszowi (zeru) odpowiada zakres napięcia 0 - 0,4[V], natomiast
prawdzie (jedynce) - zakres 2,4-5[V]. Technika cyfrowa obejmuje ogół układów realizujących
różnego rodzaju funkcje pozwalające na przetwarzanie sygnałów cyfrowych. Wśród tych
układów możemy wyróżnić układy kombinacyjne i sekwencyjne. W układach
kombinacyjnych nie występują elementy pamiętające, a wyjścia w dowolnej chwili czasowej
zależą tylko od stanów wejść w tej samej chwili. Układy sekwencyjne natomiast to układy
zawierające elementy pamiętające i (lub) wejścia zegarowe, a stany wyjść w tych układach
zależą nie tylko od stanów wejść w danej chwili ale również od stanów tych wejść w chwilach
poprzednich.
Informacje dodatkowe
Studenci na zajęciach z przedmiotu pracują podzieleni na 6 sekcji. Warunkiem zaliczenia
zajęć laboratoryjnych jest wykonanie sprawozdania z przeprowadzonych prac na komputerze
oraz jego zaliczenie.
W ramach zajęć studenci wykonują badania symulacyjne wybranych elementów i układów
cyfrowych oraz realizują i symulują własne projekty. Zajęcia odbywają się w oparciu o pakiet
Active-CAD pozwalający na symulację układów cyfrowych oraz na zapisywanie stworzonych
projektów wewnątrz układów programowalnych. Układy te są programowalną matrycą
posiadającą wejścia i wyjścia, wewnątrz której możemy zrealizować zadany układ cyfrowy
przy założeniu pewnych ograniczeń.
Studenci przychodzą na zajęcia przygotowani w oparciu o instrukcję oraz dostępną
literaturę. Warunkiem dopuszczenia do zajęć jest znajomość zakresu materiału w stopniu
pozwalającym na realizację przewidzianego programu zajęć laboratoryjnych.
Zapisy liczb stosowane w układach cyfrowych i mikroprocesorowych
W technice cyfrowej najczęściej stosuje się binarny bądz szesnastkowy zapis liczb. W
kodzie binarnym dowolną liczbę naturalną zapisuje się jako sumę kolejnych potęg liczby 2
pomnożonych przez odpowiednie współczynniki. Przykładowo zapisując liczbę 106 w kodzie
dziesiętnym i binarnym otrzymamy:
106 =1"102ƒÄ…0"101ƒÄ…6"100 - zapis dziesiÄ™tny,
106 d =1"26ƒÄ…1"25ƒÄ…0"24ƒÄ…1"23ƒÄ…0"22ƒÄ…1"21ƒÄ…0"20=1101010 b - zapis binarny.
Pojedyncza cyfra 0 bądz 1 nazywana jest bitem informacji, natomiast połączenie 8 bitów
tworzy bajt. W praktyce stosuje się liczby 1, 2 i więcej bajtowe. Liczba 106 zapisana w
jednym bajcie ma postać 011010101b. Oprócz systemu dwójkowego w układach
mikroprocesorowych stosuje się zapis heksadecymalny, w którym dowolną liczbę naturalną
zapisuje się jako sumę kolejnych potęg liczby 16 pomnożonych przez odpowiednie
współczynniki, przy czym stosuje się tu cyfry 0-9 i litery A-F odpowiadające liczbom: A-10,
B-11, C-12, D-13, E-14, F-15. Zapis heksadecymalny powstaje poprzez zgrupowanie po 4
bity liczby zapisanej w systemie binarnym. Zapisana w systemie heksadecymalnym liczba 106
będzie wyglądała następująco:
106d = 0110 1010 b
106d = 6 A h
W powyższej instrukcji i na zajęciach będą wykorzystywane wszystkie trzy przedstawione
metody zapisu liczb.
ZAJCIA NR 1
Układy Kombinacyjne
Układy kombinacyjne należą do najprostszych układów realizowanych w technice
cyfrowej. Stany wyjść w tych układach zależą tylko i wyłącznie od stanów wejść w tej samej
chwili czasowej. W układach kombinacyjnych wykorzystuje się bramki logiczne, sumatory,
dekodery itp. Bramki logiczne są to podstawowe elementy realizujące określone funkcje
logiczne. Bramki oraz ich tablice prawdy czyli tablice przedstawiające stany wyjść przy
wszystkich możliwych stanach wejść - są przedstawione na rysunku i opisane poniżej.
INV AND OR NAND NOR
I1 I1 I1 I1
I O O O O O
I2 I2 I2 I2
O = I
O = I1I2 O = I1+I2 O = I1I2 O = I1+I2
I O I1 I2 O I1 I2 O I1 I2 O I1 I2 O
0 1 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 1 0 1 1 0 1 0
1 0 0 1 0 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 0
Rys.1 Podstawowe bramki logiczne
Opisy podstawowych bramek logicznych:
INV(NOT) inwerter - bramka odpowiadajÄ…ca funkcji negacji w logice. Zmienia stan
sygnału cyfrowego na przeciwny (0 na 1 i 1 na 0). Bramka jednowejściowa. W
oprogramowaniu Active-CAD - symbol INV.
AND iloczyn bramka odpowiadajÄ…ca funkcji iloczynu logicznego w logice. Na
wyjściu pojawia się stan logiczny 1 tylko wtedy, gdy na wszystkich wejściach pojawią się
stany logiczne 1. W przeciwnym wypadku na wyjściu występuje stan logiczny 0. Bramka
dwu- lub wielowejściowa. W oprogramowaniu Active-CAD - symbol AND2-AND18.
OR suma bramka odpowiadająca funkcji sumy logicznej w logice. Na wyjściu pojawia
się stan logiczny 1 jeżeli na jakimkolwiek wejściu pojawi się stan logiczny 1. W
przeciwnym wypadku na wyjściu występuje stan logiczny 0. Bramka dwu- lub
wielowejściowa. W oprogramowaniu Active-CAD - symbol OR2-OR18.
NAND zanegowany iloczyn. Jest to szeregowe połączenie bramki AND z bramką INV
na wyjściu. Dla tych samych stanów wejściowych jak dla bramki AND wyjście będzie
przyjmowało stany przeciwne. Bramka dwu- lub wielowejściowa. W oprogramowaniu
Active-CAD - symbol NAND2-NAND16.
NOR zanegowana suma. Jest to szeregowe połączenie bramki OR z bramką INV na
wyjściu. Dla tych samych stanów wejściowych jak dla bramki OR wyjście będzie
przyjmowało stany przeciwne. Bramka dwu- lub wielowejściowa. W oprogramowaniu
Active-CAD - symbol NOR2-NOR16.
Każdy układ kombinacyjny może zostać zrealizowany przy wykorzystaniu jednego
typu bramek (NOR lub NAND). Dzięki temu zmniejszone są koszty realizacji systemu
cyfrowego (bramki cyfrowe występują po kilka sztuk wewnątrz jednego układu scalonego).
Podstawowe prawa algebry Boole a
W celu minimalizacji ilości bramek cyfrowych należy się posługiwać wzorami
obowiązującymi w logice dwuwartościowej. Poniżej zestawione zostały podstawowe
zależności:
a+b = b+a a*b = b*a
a*(b+c) = a*b + a*c a+b*c = (a+b)*(a+c)
(a+b)+c = a+(b+c) (a*b)*c = a*(b*c)
a+0 = a a*1 = a
a+1 = 1 a*0 = 0
a+a = a a*a = a
aƒÄ…a=1 a"a=0
Ä… Ä…
Prawa de Morgana
aƒÄ…b=a"Ä… a"b=aƒÄ…Ä…
b b
Ä… Ä…
Poniżej przedstawiony został przykład zastosowania praw algebry Boole a do
uproszczenia funkcji logicznej.
Realizowana funkcja logiczna ma postać:
Y = (A+B)* +B*C+A
C
Układ cyfrowy realizujący powyższą funkcję przedstawiono na rysunku poniżej:
Za pomocą praw algebry Boole a funkcję logiczną możemy przekształcić do
następującej postaci:
Y = (A+B)* +B*C+A = A* +B* +B*C+A = A*( +1)+B*( +C) = A+B
C C C C C
Jak widać powyższa funkcja logiczna została zredukowana do jednej sumy logicznej,
co znacznie upraszcza jej realizacjÄ™ praktycznÄ….
Projektowanie układów cyfrowych
W poprzednim rozdziale przedstawiona została metoda realizacji układu bazująca na
matematycznym zapisie funkcji logicznej, która może zostać poddana dodatkowo
minimalizacji przy wykorzystaniu praw algebry Boole a. W tym rozdziale zapoznamy siÄ™ z
metodami projektowania układów cyfrowych. Pierwsza metoda (oparta o formę kanoniczną)
polega na określeniu, na podstawie tablicy prawdy, wszystkich możliwych stanów przy
których funkcja ma przyjmować wartości równe 1, określeniu zależności opisujących każdy z
tych stanów, a następnie wyznaczeniu ich sumy logicznej i dokonaniu minimalizacji funkcji.
Druga metoda wykorzystuje tak zwane tablice Karnaugha. Obie metody zostanÄ…
wytłumaczone w oparciu o poniższy przykład.
Przykład: Głosowania dla 4 osób.
Zadanie polega na zaprojektowaniu układu, który będzie ustawiał wyjście w stan 1 gdy
liczba osób głosujących na tak (stan wejścia w układzie 1) będzie większa, bądz równa
liczbie osób głosujących na nie (stan wejścia w układzie 0).
Metoda nr 1.
Rozwiązanie rozpoczynamy od narysowania tabeli prawdy. I wejścia osoby
1 I
4
głosujące, O wyjście.
Lp. I I I I O
1 2 3 4
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
Jak widać z tablicy prawdy funkcja O przyjmuje wartość 1 przy kombinacjach wejść nr: 3,
5-7, 9-15. Każdą z tych kombinacji można określić jednoznacznie jako iloczyn logiczny
wszystkich wejść, przy czym, gdy wejście ma wartość 0, to w zależności uwzględniamy jego
negację. Kombinacje wejść, przy których O ma wartość 1, zestawiono w tabeli.
Lp. I I I I O Zależność
1 2 3 4
3 0 0 1 1 1 I "I "I "I
1 2 3 4
5 0 1 0 1 1 I "I "I "I
1 2 3 4
6 0 1 1 0 1 I "I "I "I
1 2 3 4
7 0 1 1 1 1 I "I "I "I
1 2 3 4
9 1 0 0 1 1 I "I "I "I
1 2 3 4
10 1 0 1 0 1 I "I "I "I
1 2 3 4
11 1 0 1 1 1 I "I "I "I
1 2 3 4
12 1 1 0 0 1 I "I "I "I
1 2 3 4
13 1 1 0 1 1 I "I "I "I
1 2 3 4
14 1 1 1 0 1 I "I "I "I
1 2 3 4
15 1 1 1 1 1 I "I "I "I
1 2 3 4
W celu uzyskania funkcji wyjściowej należy dokonać sumy logicznej przedstawionych
powyżej zależności. Otrzymamy wtedy funkcję:
O=śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źą
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
ƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źąƒÄ…śą I "I "I "I źą
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
ƒÄ…śą I "I "I "I źą
1 2 3 4
Redukując powyższą funkcję otrzymamy:
O=I "I "śą I "I ƒÄ…I "I ƒÄ…I "I ƒÄ…I "I źąƒÄ…I "I "śą I "I ƒÄ…I "I ƒÄ…I "I źą
1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 1 2
ƒÄ…I "I "śą I "I ƒÄ…I "I źąƒÄ…I "I "śą I "I ƒÄ…I "I źą
1 2 3 4 3 4 1 2 3 4 3 4
Wyrażenie w pierwszym nawiasie zawsze jest równe 1 a dodatkowo korzystając z
zależności a = a+a otrzymujemy:
O=I "I ƒÄ…I "I ƒÄ…śą I "I ƒÄ…I "I źą"śą I "I ƒÄ…I "I źą
1 2 3 4 1 2 1 2 3 4 3 4
Układ realizujący funkcje logiczną O jest następujący.
Metoda nr 2.
Metoda oparta o tablice Karnaugha należy do metod zalgorytmizowanych. Wykorzystuje się
w niej tablice dwuwymiarowe, wewnątrz których zaznacza się obszary wypełnione jedynkami
(odpowiadajÄ…ce iloczynom logicznym) bÄ…dz zerami (odpowiadajÄ…ce sumom logicznym). Przy
tworzeniu tablic Karnaugha należy zwrócić uwagę na to, aby sąsiednie stany wejść różniły się
o tylko jednym bitem. W powyższym przykładzie kolejność zmiennych jest następująca: 00,
01, 11, 10. Zaznaczane obszary mogą mieć 2,4,8 itd. elementów.
Tablica Karnaugha dla przykładu głosowania.
I I
1 2
00 01 11 10
I I
3 4
00 0 0 1 0
01 0 1 1 1
11 1 1 1 1
10 0 1 1 1
Po zaznaczeniu grup, każdej przypisuje się odpowiednie wyrażenie ją opisujące dla
grup składających się z jedynek wyrażenie to ma postać iloczynu wejść, które nie zmieniają
swych wartości. Dodatkowo jeśli stan wejścia jest równy 1 to w zależności wykorzystujemy
bezpośrednio dane wejście, natomiast gdy wejście ma stan 0 wykorzystujemy negację tego
wejścia. Przykładowo dla grupy czterech jedynek ustawionych pionowo przypisuje się
zależność: I *I Na podstawie zaznaczonych obszarów funkcja logiczna O ma postać:
1 2.
O=I1"I ƒÄ…I "I ƒÄ…I "I ƒÄ…I "I ƒÄ…I "I ƒÄ…I "I
2 1 3 1 4 2 3 2 4 3 4
Układ realizujący funkcję O jest następujący.
Podczas zajęć będą wykonywane projekty układów kombinacyjnych w oparciu o instrukcję do
ćwiczenia, bazujące na przedstawionych metodach projektowania.
ZAJCIA NR 2
Przerzutniki i ich zastosowania.
Przedstawione na poprzednich zajęciach układy kombinacyjne nie pozwalają na
realizację niektórych zadań ze względu na fakt, że ich wyjścia w danej chwili czasowej zależą
tylko od stanów wejść w tej samej chwili. Przykładem takiego zadania może być zliczanie
impulsów kolejno pojawiających się na wejściu układu. Aby je rozwiązać, układ cyfrowy
musi być wyposażony w elementy pamiętające. Rolę elementów pamiętających w układach
cyfrowych pełnią najczęściej przerzutniki. Do podstawowych zadań przerzutników możemy
zaliczyć:
pamiętanie stanów układu aż do wykasowania przerzutnika
odczytywanie stanów wejść w określonych chwilach czasowych
zliczanie i rejestrację impulsów wejściowych
Grupę układów cyfrowych, których wyjścia zależą nie tylko do stanów wejść w
dowolnej chwili czasowej, ale również od stanów wejść w chwilach poprzednich, nazywamy
układami sekwencyjnymi. W układach sekwencyjnych bardzo często występują dodatkowe
sygnały zegarowe, pozwalające na synchronizację pracy układu. Jeżeli w układzie cyfrowym
zmiany stanów przerzutników następują równocześnie w określonych chwilach czasowych,
takie układy nazywa się synchronicznymi. Jeśli ten warunek nie jest spełniony, układ cyfrowy
nazywa się asynchronicznym. W ramach przedmiotu zajmować się będziemy układami
asynchronicznymi.
Rodzaje przerzutników
W technice cyfrowej rozróżnia się dwa rodzaje przerzutników: asynchroniczne
przerzutnik typu RS i synchroniczne przerzutniki typu D, T, JK. Poniżej zostaną omówione
poszczególne typy przerzutników.
1. Przerzutnik typu RS
Przerzutnik RS jest układem dwuwejściowym o wejściu ustawiającym S (ang. Set) i
wejściu kasującym R (ang. Reset). Wejście S służy do ustawiania na wyjściu Q sygnału 1,
wejście R służy do kasowania sygnału wyjściowego. Przerzutnik będzie zachowywał
informację o pojawieniu się sygnału na wejściu S, dopóki nie pojawi się sygnał na wejściu R.
Można więc traktować taki układ jako podstawowy element pamiętający. Na rysunku
pokazano wersję przerzutnika RS z zanegowanymi wejściami (typ dostępny w bibliotece
programu Active-CAD symbol LSR1), w którym sygnałami aktywnymi są sygnały na
poziomie niskim (0) oraz tablicÄ™ prawdy dla tego przerzutnika.
S R Q
0 0 X
0 1 1
1 0 0
1 1 Q
N-1
Przerzutnik RS z zanegowanymi wejściami i jego tablica prawdy
W warunkach pamiętających układ na obu wejściach posiada stany 1. Aby zapisać
informację na wyjściu przerzutnika (ustawić wyjście w stan 1) należy na krótką chwilę podać
stan 0 na wejście S. Wyjście przerzutnika pozostanie w tym stanie dopóki nie pojawi się 0 na
wejściu R. Należy unikać sytuacji, gdy na obu wejściach zostanie wymuszony stan 0,
ponieważ nie można wtedy przewidzieć stanu wyjścia. Jest to tak zwany stan zabroniony
przerzutnika. W odróżnieniu do bramek logicznych przerzutnik może posiadać wyjścia w
różnych stanach przy tych samych sygnałach wejściowych. Przerzutniki te stosuje się
najczęściej do zapamiętywania i przechowywania informacji. Przykłady zastosowań takich
przerzutników zostaną podane w dalszej części.
2. Przerzutnik typu D
Przerzutnik D jest układem dwuwejściowym o wejściu opózniającego D (ang. Delay) i
wejściu zegarowym CLK (ang. Clock). Występowanie wejścia zegarowego jest
charakterystyczne dla układów synchronicznych. Sygnał, który występuje na wejściu D, jest
przepisywany na wyjście przerzutnika przy wystąpieniu zbocza narastającego na wejściu
zegarowym. Przerzutnik utrzymuje wpisany stan wyjściowy aż do chwili wpisania kolejnego
stanu wejścia D, przy kolejnym zboczu narastającym sygnału zegarowego. Tak więc na
wyjście przepisywane są stany wejść tylko w konkretnych chwilach czasowych i utrzymywane
aż do następnego sygnału zegarowego. Dzięki swoim własnościom przerzutniki te są
stosowane do synchronicznego pobierania danych przez układ cyfrowy i pozwalają na
krótkotrwałe zapamiętanie stanów wejściowych. Na rysunku pokazano przerzutnik D,
dostępny w bibliotece programu Active-CAD symbol LD11 oraz tablicę prawdy dla tego
przerzutnika. Symbol oznacza zbocze narastające sygnału zegarowego, natomiast (-)
oznacza inne stany wejścia zegarowego.
D CLK Q
0
0
1
1
(-) Q
N-1
0
1 (-) Q
N-1
Przerzutnik D i jego tablica prawdy
3. Przerzutnik typu JK
Przerzutnik JK jest układem trójwejściowym, o wejściu zegarowym CLK (ang. Clock)
i dwóch wejściach informacyjnych: wejściu ustawiającym J i wejściu kasującym K. Jest to
najbardziej uniwersalny oraz najczęściej wykorzystywany w praktyce przerzutnik,
szczególnie w układach liczących. Przerzutnik ten w zależności od stanów sygnałów na
wejściach J i K zachowuje się w następujący sposób:
wejścia J = 0, K = 0 przerzutnik jest w stanie pamiętania,
wejście J = 1, K = 0 przerzutnik ustawia wyjście Q w stan 1,
wejście J = 0, K = 1 - przerzutnik ustawia wyjście Q w stan 0,
wejście J =1, K = 1- przerzutnik neguje sygnał wyjściowy.
Zmiany na wyjściu przerzutnika JK następują synchronicznie ze zboczem
narastającym sygnału na wejściu CLK, po czym przerzutnik utrzymuje stan wyjściowy aż do
chwili pojawienia się kolejnego zbocza narastającego w sygnale wejściowym. Najczęściej
wykorzystywane w praktyce, jest podłączanie obu wejść J i K do poziomu wysokiego. W tym
stanie przerzutnik neguje sygnał wyjściowy przy każdym zboczu narastającym sygnału
zegarowego. Dzięki temu częstotliwość sygnału wyjściowego jest dwukrotnie niższa niż
częstotliwość sygnału wejściowego. Aącząc szeregowo przerzutniki JK uzyskuje się układy
pozwalające na dzielenie częstotliwości sygnału wejściowego oraz tworzenie układów
zliczających liczbę impulsów wejściowych. Działanie takich liczników zostanie omówione w
dalszej części instrukcji. Na rysunku pokazano przerzutnik JK, dostępny w bibliotece
programu Active-CAD symbol FJK11 oraz jego tablicÄ™ prawdy. Symbol oznacza zbocze
narastające sygnału zegarowego, natomiast (-) oznacza inne stany wejścia zegarowego.
J K CLK Q
0 0 Q
N-1
0 1 0
1 0 1
QN-1
1 1
(-)
0 0 Q
N-1
0 1 (-) Q
N-1
1 0 (-) Q
N-1
1 1 (-) Q
N-1
Przerzutnik JK i jego tablica prawdy
Przykłady zastosowania przerzutników - układy sekwencyjne
W dalszej części zostaną przedstawione przykłady zastosowań przerzutników. W
ramach zajęć laboratoryjnych studenci zrealizują oraz przebadają przykłady zastosowań
przerzutników zadane przez prowadzącego zajęcia.
Przykład: Przejście dla pieszych - sterowanie sygnalizacją świetlną.
Sygnalizacja pokazana jest na poniższym rysunku. Przy sygnalizatorach występują
przyciski jednopołożeniowe (informacja o ich naciśnięciu jest tracona z chwilą oderwania
palca od przycisku). Ponieważ do prawidłowego działania układu potrzebna jest informacja o
stanie przycisków do jej przechowania można wykorzystać przerzutniki typu RS.
I1
I2
Światła dla pieszych działają w oparciu o zasady:
- światło zielone może zapalić się najwcześniej po minucie od poprzedniego zgaśnięcia
- światło zielone jest załączone przez 20 sekund
- w momencie zapalenia światła zielonego bez zwłoki gaśnie światło czerwone i
odwrotnie
- oba przyciski I oraz I majÄ… jednakowy priorytet
1 2
W celu zapewnienia poprawnej pracy układu sterowania, występują w nim dodatkowe
sygnały: sygnał 1MIN wejście, na którym pojawia się stan 1 po upływie 1 minuty od chwili
poprzedniego zgaśnięcia światła zielonego oraz sygnał 20S wejście, na którym pojawia się
stan 1 po upływie 20 s od chwili zapalenia światła zielonego. Ponieważ wypracowanie tego
rodzaju sygnałów wymaga zastosowania układów czasowo-licznikowych, przyjęto dostępność
tych sygnałów bez realizacji układów je wytwarzających. Na rysunku poniżej pokazano układ
realizujący sterowanie sygnalizacją świetlną.
Po naciśnięciu jednego z przycisków (odpowiada to pojawieniu się stanu logicznego 1
na wejściu I1 lub I2), wyjście przerzutnika SR (U3) zostaje ustawione w stan 1. Jeśli na
wejściu 1MIN pojawi się stan 1 (minęła 1 minuta od czasu poprzedniego zgaśnięcia światła
zielonego), sygnał logiczny 1 pojawi się na wyjściu ZIELONE światło zielone zaświeci się,
a równocześnie zgaśnie światło czerwone ( poprzez inwerter U5). W przypadku pojawienia
się 1 na wejściu 20 - światło zielone pali się przez 20 sekund przerzutnik zostaje skasowany
na wyjściu Q pojawia się stan logiczny 0 i światło zielone gaśnie. W tym przykładzie
przerzutnik RS służy do przechowywania informacji o naciśnięciu przycisków po ich
zwolnieniu. Na zajęciach zostaną przedstawione dalsze przykłady dotyczące zastosowania
przerzutników RS.
Przykład: Zastosowanie przerzutnika typu JK jako dwójki liczącej.
Przerzutnik JK jest najczęściej wykorzystywanym przerzutnikiem w układach
liczących. Budowa układów licznikowych opiera się o jego zachowanie w przypadku, gdy na
obu wejściach J i K występują stany logiczne 1. Wtedy przerzutnik na wyjściu generuje sygnał
o częstotliwości dwa razy mniejszej niż na wejściu CLK. Układ oraz przebiegi: wejściowy i
wyjściowy przedstawiono na rysunku.
Jak widać, w przerzutniku JK zmiany na wyjściu następują tylko przy zboczach
narastających sygnału wejściowego. Dodatkowo sygnał wyjściowy ma częstotliwość dwa razy
mniejszą od wyjściowego. Przypisując wyjściu przerzutnika wagę 20, na wyjściu otrzymujemy
stany 0 bądz 1. Dzięki temu możemy przypisać numery kolejnym impulsom wprowadzanym
do przerzutnika, przy czym w takim układzie możemy zliczyć dwa kolejne impulsy
wejściowe. Jednak jeśli połączymy wyjście z jednego przerzutnika z wejściem drugiego,
otrzymamy układ pozwalający na zliczanie większej ilości impulsów wejściowych. Układy
takie zostaną przedstawione na zajęciach numer 3.
ZAJCIA NR 3
Układy sekwencyjne.
Układami sekwencyjnymi nazywa się układy cyfrowe, w których występują elementy
pamiętające i poprzez to można za ich pomocą realizować bardziej skomplikowane zadania
niż w przypadku układów kombinacyjnych. Typowymi elementami składowymi układów
sekwencyjnych, stosowanymi w praktyce, są liczniki impulsów wejściowych. Są one
zbudowane z przerzutników JK opisanych w instrukcji do poprzedniego ćwiczenia.
Przypisując wyjściom poszczególnych liczników odpowiednie wagi możemy uzyskać zapis
binarny liczby impulsów zliczonych przez układ licznika. W ramach ćwiczenia studenci
zapoznają się z metodą tworzenia liczników zliczających w górę i w dół z przerzutników JK
oraz metodą tworzenia licznika zliczającego do dowolnej liczby impulsów. Zdobyta wiedza
pozwoli na samodzielne rozwiązanie problemu postawionego przez prowadzącego zajęcia,
dotyczącego układu sekwencyjnego.
Liczniki binarne impulsów wejściowych realizacja za pomocą przerzutników
1. Licznik liczący w górę
Na rysunku pokazano układ licznika 2 bitowego (rozróżniającego 4 stany), liczącego
w górę. Zbudowany jest on z dwóch przerzutników JK, do których wejść J i K podane zostały
logiczne sygnały jeden oraz inwertera, którego zadaniem jest zmiana polaryzacji sygnału
wyjściowego z przerzutnika U1.
Przyjmując, że sygnał wejściowy CLK jest przebiegiem prostokątnym, na wyjściach
Q0 i Q1 otrzymujemy następujące przebiegi.
CLK
Q0(20)
Q1(21)
0 1 2
0 1 2 3
0 1 2 3
Przypisując wyjściom Q0 i Q1 odpowiednie wagi: Q0 = 20, Q1 = 21, otrzymujemy
zapis binarny liczby kolejnych impulsów zliczonych przez licznik. Liczba możliwych do
zliczenia impulsów wynosi 4 - po osiągnięciu stanu 3, licznik rozpoczyna zliczanie od 0
(licznik modulo 4). Inwerter (poprzez swoje własności odwracające) jest w tym układzie
elementem odpowiedzialnym za zmianę zapisu binarnego liczby impulsów w kierunku
zliczania w górę. W celu zwiększania rozmiaru licznika należy rozbudować układ dołączając
kolejne przerzutniki JK do wyjść poprzednich poprzez inwertery. Kolejnym wyjściom z
przerzutników należy nadać wagi kolejnych potęg liczby 2. Możliwe jest uzyskanie liczników
zliczających 2n impulsów wejściowych, przy ilości przerzutników równej n.
2. Licznik liczący w dół
W niektórych przypadkach istnieje potrzeba zastosowania liczników, które zliczają
impulsy wejściowe w kierunku malejącym (zliczanie w dół). Na rysunku pokazano układ
takiego licznika binarnego 2 bitowego. Zbudowany jest on, podobnie jak poprzedni, z dwóch
przerzutników JK, jednak w tym przypadku w strukturze nie występuje inwerter.
Przyjmując, że sygnał wejściowy CLK jest przebiegiem prostokątnym, na wyjściach
Q0 i Q1 otrzymujemy następujące przebiegi.
CLK
Q0(20)
Q1(21)
0 3 2
3 1 0 3 2 1
0 2
Ponownie, jeśli przypiszemy wyjściom Q0 i Q1 odpowiednie wagi: Q0 = 20, Q1 = 21,
to otrzymamy zapis binarny liczby kolejnych impulsów zliczonych przez licznik, jednak w
tym przypadku licznik zlicza w dół (od cyfry 3 do cyfry 0). Liczba możliwych do zliczenia
impulsów wynosi 4, po stanie 0 licznik zmienia stan wyjść na 3 i ponownie rozpoczyna
zliczanie w dół . W celu zwiększania rozmiaru licznika należy zwiększyć liczbę
przerzutników JK dołączając kolejne przerzutniki do wyjść poprzednich. Kolejnym wyjściom
przerzutników należy nadać wagi kolejnych potęg liczby 2. Możliwe jest uzyskanie liczników
zliczających 2n impulsów wejściowych, przy ilości przerzutników równej n.
Liczniki binarne gotowe bloki liczników w programie Active Cad
W technice cyfrowej zamiast budować liczniki z przerzutników JK często
wykorzystuje się gotowe liczniki 2, 4 i więcej bitowe. Poniżej przedstawione zostaną wybrane
układy liczników binarnych występujące w oprogramowaniu Active Cad.
1. Liczniki 2-bitowe
Liczniki 2-bitowe, pozwalające zliczyć do 4 impulsów wejściowych, przedstawione
zostały na rysunku.
Licznik o symbolu CBU12 jest binarnym licznikiem 2-bitowym, zliczającym w górę,
natomiast licznik CBD12 licznikiem zliczającym w dół. Jako wejście zegarowe
wykorzystuje się wejście CLK, jako wyjścia Q0 i Q1. Dodatkowe wejście CD oznacza
wejście asynchroniczne kasujące (1 na tym wejściu powoduje skasowanie stanu licznika i
rozpoczęcie procesu zliczania od nowa). Wejście CAI i wyjście CAO są wykorzystywane w
przypadku przekręcania się licznika do informowania o fakcie dojścia przez dany licznik
do końca zakresu. Liczniki powyższe mają identyczne działanie jak liczniki zbudowane z
przerzutników JK przedstawionych powyżej.
2. Liczniki 4-bitowe
Liczniki 4-bitowe pozwalające zliczyć do 16 impulsów wejściowych, przedstawione
zostały na rysunku.
Licznik o symbolu CBU14 jest binarnym licznikiem 4-bitowym, zliczającym w górę,
natomiast licznik CBD14 licznikiem zliczającym w dół. Liczniki powyższe mają identyczne
działanie i opis wejść i wyjść jak liczniki 2-bitowe opisane powyżej, a jedyną różnicą jest
możliwość zliczenia większej ilości impulsów wejściowych.
3. Liczniki rewersyjne
Ponieważ w niektórych sytuacjach istnieje potrzeba zliczania impulsów zarówno w
górę jak i w dół stworzone zostały specjalne liczniki pozwalające na realizację tego typu
zadań. Przykładowy licznik 4-bitowy zliczający w górę i w dół pokazano na rysunku.
Układ ten, o symbolu CBUD4, jest wyposażony w następujące wejścia i wyjścia:
CLK wejście zegarowe
Q0-Q3 wyjścia licznika określające binarnie liczbę zliczonych
bitów
DO-D3 wejścia wpisu równoległego (pozwalające na wpisanie
wartości początkowej do licznika
DN/UP wejście określające kierunek zliczania 0- zliczanie w
górę, 1- zliczanie w dół
LD wejście wpisu równoległego 1 na tym wejściu wpisuje na
wyjścia Q0 Q3 stany wejść D0 D3
CD wejście kasowania asynchronicznego
CS wejście kasowania synchronicznego
EN wejście ENABLE pozwalające na załączenie struktury
licznika
PS - wejście ustawiania synchronicznego
CAI wejście informujące układ, że poprzedni licznik zliczył
maksymalną liczbę impulsów
CAO wyjście informujące kolejne liczniki o zliczeniu
maksymalnej liczby impulsów
Jak widać z wyżej wymienionego opisu wejść i wyjść układ działa w sposób zbliżony
do poprzednio opisanych liczników ale umożliwia dwukierunkowe zliczanie impulsów o
kierunku zliczania określanym przez odpowiedni stan wejścia DN/UP.
Realizacja licznika binarnego zliczającego zadaną liczbę impulsów
Wszystkie opisane powyżej liczniki posiadają wejście CD pozwalające na
natychmiastowe skasowanie zawartości licznika. Wejście to może być wykorzystane do
ograniczenia liczby zliczanych w liczniku impulsów. Przykładowo na rysunku poniżej
przedstawiono układ oparty o licznik 4-bitowy CBU14 (zliczający w górę), pozwalający na
realizację licznika modulo 10 (zliczającego 10 impulsów o numerach 0 9). Układ taki może
mieć zastosowanie jako licznik dziesiętny.
W celu realizacji układu zliczającego do 10 impulsów wejściowych (cyfry od 0 do 9),
należy w oparciu o sygnał wyjściowy z licznika detektować liczbę 10 (jedynki na wyjściach:
Q1 -waga 21 i Q3 waga 23). Do wykrywania tego stanu służy w tym przypadku bramka
AND. Sygnał wyjściowy z bramki podawany jest na wejście kasowania asynchronicznego i
powoduje natychmiastowe skasowanie licznika i rozpoczęcie zliczania od liczby 0. Dzięki
temu największą wartością mogącą się pojawić na wyjściu licznika jest cyfra 9.
W ramach zajęć studenci wykorzystają praktycznie informacje przedstawione w
instrukcji do samodzielnego projektowania układów licznikowych.
Wyszukiwarka
Podobne podstrony:
TECHNIKA CYFROWA 2 wyklad4Technika cyfrowatechnika cyfrowa ukl synchr i asynchrTECHNIKA CYFROWA 2 WYKLAD2Przyklady z Techniki CyfrowejZastosowanie pakietu Multisim w dydaktyce techniki cyfrowejTechnika Cyfrowawięcej podobnych podstron