sieć komputerowa praca dyplomowa niecala WZTPBW6EPROO6RXBFDPNWPIBMTTMDXDKX3P4B7Y


PRACA DYPLOMOWA

TEMAT: SIEĆ KOMPUTEROWA

PROWADZĄCY:

mgr Urszula Malich

WYKONAŁ:

Marek Kaławaj

  1. Wprowadzenie.

W ostatnich latach sieci komputerowe stały się niezbędnym narzędziem w przemyśle, bankowości, administracji, wojsku, nauce i innych działach gospodarki. Na rynku dostępne są różnorodne technologie sieciowe, których kierunki rozwoju określone są przez międzynarodowe organizacje standaryzacyjne i grupy robocze przy współudziale największych firm dostarczających sprzęt i oprogramowanie sieciowe.

Sieć komputerowa jest systemem komunikacyjnym służącym do przesyłania danych, łączącym, co najmniej dwa komputery i urządzenia peryferyjne.

    1. Cel tworzenia sieci.

Przyczyny zakładania sieci komputerowych i ich podstawowe cechy są następujące:

  1. współużytkowanie programów i plików;

  2. współużytkowanie innych zasobów: drukarek, ploterów, pamięci masowych, itd.

  3. współużytkowanie baz danych;

  4. ograniczenie wydatków na zakup stacji roboczych;

  5. tworzenie grup roboczych - ludzie z różnych miejsc mogą uczestniczyć w tym samym projekcie;

  6. poczta elektroniczna, szybkie i łatwe komunikowanie się;

  7. oprogramowanie wspomagające pracę grup roboczych i obieg dokumentów;

  8. rozwój organizacji - sieci mogą zmieniać strukturę organizacyjną firmy i sposób jej zarządzania;

    1. Klasyfikacja sieci.

Ze względu na obszar, jaki obejmują swym zasięgiem, przeznaczenie i przepustowość sieci można podzielić na następujące klasy:

  1. lokalna sieć komputerowa (LAN - Local Area Network) - jest to sieć łącząca użytkowników na niewielkim obszarze (pomieszczenie, budynek). Sieci te charakteryzują się przede wszystkim małym kosztem dołączenia stacji, prostym oprogramowaniem komunikacyjnym i łatwością rozbudowy. Typową cechą sieci lokalnej jest korzystanie ze wspólnego medium transmisyjnego przez komunikujące się stacje;

  2. sieć terytorialna, kampusowa (campus network) - sieć obejmująca swym zasięgiem kilka budynków znajdujących się np. na terenie uczelni, przedsiębiorstwa;

  3. miejska sieć komputerowa (MAN - Metropolitan Area Network) - jest to sieć o zasięgu miasta. Najczęściej są to szybkie sieci wybudowane w oparciu o łącza światłowodowe. Sieci te udostępniają różne usługi, np.: połączenia między sieciami lokalnymi, możliwość bezpośredniego dołączenia stacji roboczych lub korzystanie z mocy obliczeniowej „dużych” komputerów pracujących w sieci;

  4. rozległa sieć komputerowa (WAN - Wide Area Network) - jest to sieć, która przekracza granice miast, państw, kontynentów. Sieć taka składa się z węzłów i łączących je łączy transmisyjnych. Dostęp do sieci rozległej uzyskuje się poprzez dołączenie systemów użytkownika do węzłów sieci. W węzłach znajdują się urządzenia umożliwiające przesyłanie danych między różnymi użytkownikami. Łączność pomiędzy węzłami realizowana jest za pomocą publicznej sieci telefonicznej, specjalnie wybudowanych łączy, kanałów satelitarnych, radiowych lub innych;

  5. sieć radiowa (Radio Network) - jest to sieć bezprzewodowa, w której medium transmisyjnym jest kanał radiowy. Przy każdej stacji lub grupie stacji zainstalowane jest urządzenie nadawczo - odbiorcze zapewniające transmisję danych. Zasięg tych sieci jest uwarunkowany zasięgiem stacji nadawczo - odbiorczych;

  6. sieć satelitarna - sieć, w której sygnały ze stacji naziemnych są transmitowane do satelity, który retransmituje je do innej (innych) stacji naziemnych. Satelita pełni również rolę wzmacniacza sygnału. Zasięg takiego systemu jest znacznie większy od zasięgu sieci radiowej i zależy od mocy nadajnika satelity. Występują tutaj dość duże czasy propagacji (do 0,25 s) co może powodować problemy, gdy transmisja jest uwarunkowana czasowo. Typowym zastosowaniem takich sieci jest tworzenie alternatywnych połączeń, z których korzysta się w razie awarii połączeń naziemnych;

    1. Środowiska sieci.

Środowisko sieci określone jest przez sieciowy system operacyjny oraz przez protokoły, zapewniające komunikację i usługi sieciowe. Istnieją 2 podstawowe typy sieciowych systemów operacyjnych:

  1. każdy z każdym (peer-to-peer) - umożliwia użytkownikom udostępnienie zasobów swojego komputera oraz dostęp do zasobów innych komputerów. Wszystkie systemy w sieci mają taki sam status - żaden z nich nie jest podporządkowany innemu. Wszystkie stacje uczestniczące w sesji komunikacyjnej mają podobny stopień kontroli nad sesją, dysponują własną mocą przetwarzania i mogą kontrolować swoje działania. Rozwiązanie takie oferuje spore możliwości, nie jest jednak chętnie stosowane przez administratorów sieci ze względu na niewielkie możliwości zarządzania i niski poziom bezpieczeństwa. Występują tutaj problemy związane z lokalizacją danych, tworzeniem kopii zapasowych oraz z zapewnieniem odpowiedniej ochrony danych. Tworzenie sieci typu „każdy z każdym” umożliwiają m.in. systemy: IBM LAN Server, OS/2, LANtastic, Artisoft, MS Windows NT oraz MS Windows 95;

  2. dedykowany serwer - jeden lub więcej komputerów spełnia rolę serwera i nie wykonuje innych zadań. Serwer spełnia takie zadania jak: przechowywanie i udostępnianie plików, zarządzanie współdzieleniem drukarek oraz funkcje związane z bezpieczeństwem danych;

    1. Składniki sieci.

Sieć komputerowa składa się zarówno ze sprzętu jak i z oprogramowania. Podstawowe składniki sieci to:

  1. sieciowy system operacyjny;

  2. serwery - urządzenia lub oprogramowanie świadczące pewne usługi sieciowe, np.: serwer plików (przechowywanie i odzyskiwanie plików, włącznie z kontrolą praw dostępu i funkcjami związanymi z bezpieczeństwem), serwer poczty elektronicznej, serwer komunikacyjny (usługi połączeń z innymi systemami lub sieciami poprzez łącza sieci rozległej), serwer bazy danych, serwer archiwizujący, itd.

  3. systemy klienta - węzły lub stacje robocze przyłączone do sieci przez karty sieciowe. System operacyjny klienta może zawierać oprogramowanie (powłoka - requester) skierowujące żądania sieciowe użytkowników lub aplikacji do serwerów;

  4. karty sieciowe - adapter pozwalający na przyłączenie komputera do sieci. Stosowane są różne rodzaje kart w zależności od tego do pracy w jakiej sieci są przeznaczone;

  5. system okablowania - medium transmisyjne łączące stacje robocze i serwery. W przypadku sieci bezprzewodowych może to być podczerwień lub kanały radiowe;

  6. współdzielone zasoby i urządzenia peryferyjne - mogą to być drukarki, napędy dysków optycznych, plotery, itd.

  1. Organizacje standaryzacyjne.

Organizacje standaryzacyjne opracowują standardy (normy) określające fizyczne i funkcjonalne właściwości sprzętu wykorzystywanego do budowy sieci, sprzętu komunikacyjnego, a także systemów operacyjnych i oprogramowania. Producenci sprzętu i oprogramowania mogą wytwarzać współdziałające ze sobą produkty w oparciu o standardy. Standardy są zaleceniami, które producenci mogą zaakceptować, z drugiej strony producenci dokonują zmian we wcześniej ustanowionych standardach po to, by uwzględnić nowe właściwości oferowanych przez nich produktów.

Standard de facto to standard, który zyskał popularność mimo tego, że nie został uznany przez żadną z organizacji standaryzacyjnych.

Do najważniejszych organizacji standaryzacyjnych, które ustanawiają standardy związane z sieciami komputerowymi należą:

  1. Amerykański Instytut Normalizacyjny (American National Standards Institute - ANSI) - jest to organizacja zajmująca się definiowaniem obowiązujących w Stanach Zjednoczonych standardów kodowania i sygnalizacji. Reprezentuje USA w takich międzynarodowych organizacjach jak: ISO, CCITT. W niektórych przypadkach zatwierdza także zgodne standardy przyjęte przez IEEE. Standardy ANSI to m.in.: ANSI 802.1-1985 (IEEE 802.5, specyfikacje definiujące protokoły dostępu, okablowanie i interfejs dla sieci lokalnych typu Token Ring), ANSI/IEEE 802.3 (definiuje sieci typu Ethernet wykorzystujące przewód koncentryczny i metody dostępu: nasłuchiwania i wykrywania kolizji), ANSI X3.135 (specyfikacja języka SQL), ANSI X3.92 (standard algorytmu szyfrowania), ANSI X3T9.5 (definiuje metody przesyłania danych w sieciach światłowodowych o prędkości transmisji 100 Mb/s - FDDI) i inne;

  2. Common Open Software Environment (COSE) - jest to konsorcjum producentów, do którego należą m.in. IBM, Hewlett-Packard, SunSoft i Novell. Firmy te pracują nad jednolitym środowiskiem pracy użytkownika przeznaczonym dla systemu UNIX. Do głównych celów tej organizacji należą: opracowanie specyfikacji interfejsów API, przyjęcie jednolitych środowisk sieciowych, wybranie do zatwierdzenia technologii graficznych, multimedialnych i obiektowych, zdefiniowanie mechanizmów zarządzania i administracji w systemach rozproszonych;

  3. Międzynarodowy Komitet Doradczy ds. Telefonii i Telegrafii (Consultative Committee for International Telegraph and Telephone - CCITT) - jest to komitet ITU, którego członkami są osoby wydelegowane przez rządy krajów zrzeszonych w ONZ. Zadania CCITT obejmują analizowanie, wydawanie zaleceń i ustalanie standardów dotyczących technicznych i organizacyjnych aspektów telekomunikacji. W 1993 r. CCITT został przekształcony w Sektor Normalizacji Komunikacji Międzynarodowej Unii Telekomunikacyjnej ITU. Obecnie standardy przyjęte przez CCITT nazywa się standardami ITU-T. Komitet jest podzielony na 15 grup roboczych, które zajmują się m.in.: usługami, konserwacją i utrzymaniem urządzeń, taryfami, sieciami danych i infrastrukturą telekomunikacyjną. Grupy te spotykają się co cztery lata w celu dokonania oceny postępów w pracach, przedstawienia propozycji, przygotowania projektów standardów, proponowania i przyjmowania zaleceń. Niektóre państwa uwzględniają zalecenia CCITT w swoich wewnętrznych przepisach. Zalecenia dotyczą różnych kategorii oznaczanych literami A-Z. Oto niektóre z nich:

A i B procedury działania, terminologia i definicje;

D i E taryfy;

F usługi telegraficzne, teleinformatyczne i niestacjonarne;

G i H transmisje;

I sieci z integracją usług komunikacyjnych ISDN;

J transmisje telewizyjne;

K i L zabezpieczenia urządzeń;

M i N obsługa, konserwacja i utrzymanie;

P transmisje telefoniczne;

R-U usługi terminalowe i telegraficzne;

V przesyłanie danych w sieciach telefonicznych;

X komunikacyjne sieci danych;

Przykładowe standardy: V.22 (dupleksowa transmisja danych z prędkością 1200 bitów/s), V.28 (definiuje łącza interfejsu RS-232), V.35 (definiuje warunki szybkich transmisji po łączach zestawionych), V.34 (standard transmisji z prędkością 28 kbitów/s), X.200 (ISO 7498, model odniesienia OSI), X.25 (ISO 7776, interfejs sieci pakietowej), X.400 (ISO 10021, obsługa poczty elektronicznej) i inne.

  1. Corporation for Open Systems (COS) - jest to organizacja typu non-profit, prowadząca prace na rzecz zapewnienia zgodności i możliwości współdziałania pomiędzy produktami zgodnymi ze standardami OSI i ISDN. Opracowuje protokoły OSI, przygotowuje testy zgodności ze standardami, wydaje certyfikaty i promuje produkty zgodne z OSI.

  1. Stowarzyszenie elektroniki przemysłowej (Electronic Industries Association - EIA) - jest organizacją zrzeszającą amerykańskich wytwórców sprzętu elektronicznego. Powstała w 1924 r. Publikuje standardy dotyczące telekomunikacji i łączności komputerowej. Podstawowe standardy EIA dla telekomunikacji obejmują interfejs szeregowy modem - komputer (RS-232-C, RS-449, RS-422, RS-423). Standard EIA-232 (wcześniej RS-232 lub w CCITT: V.24) określa połączenia szeregowe pomiędzy urządzeniami DTE (Data Terminal Eipment) i DCE (Data Communication Equipment) i jest powszechnie stosowany.

  2. Stowarzyszenie Inżynierów Elektryków i Elektroników (Institute of Electrical and Electronic Engineers - IEEE) - jest to organizacja amerykańska, która zajmuje się m.in. opracowywaniem standardów przesyłania danych, w szczególności komitety IEEE 802 są odpowiedzialne za przygotowanie projektów dotyczących sieci lokalnych, które następnie są zatwierdzane przez ANSI. Swoje projekty IEEE przesyła również do ISO, która rozpowszechnia je jako standardy ISO 8802. Komitety ISO 802 koncentrują się głównie na interfejsach fizycznych. Standardy określają sposób dostępu kart sieciowych do fizycznego nośnika danych, sposób ustanawiania, obsługi i zamykania połączeń pomiędzy komunikującymi się urządzeniami sieciowymi. Standardy IEEE 802 definiują wymagania dla następujących produktów: karty sieciowe, mosty, routery i inne urządzenia wchodzące w skład sieci lokalnych, wykonanych za pomocą skrętki lub kabla koncentrycznego. Podkomitety 802 opracowujące standardy dla sieci lokalnych to: 802.1 - współpraca sieci, 802.2 - sterowanie łączem logicznym, 802.3 - metoda dostępu do medium CSMA/CD, 802.4 - sieci Token Bus, 802.5 - sieci Token Ring, 802.6 - sieci miejskie, 802.7 - doradcza grupa techniczna ds. przesyłania szerokopasmowego, 802.8 - doradcza grupa techniczna ds. światłowodów, 802.9 - zintegrowane sieci komputerowe i telefoniczne, 802.10 - bezpieczeństwo sieci, 802.11 - sieci bezprzewodowe, 802.12 - sieć lokalna z priorytetem na żądanie;

  3. Międzynarodowa Organizacja Standaryzacyjna (International Organization for Standarization - ISO) - została założona w 1947 r. Celem działania ISO jest rozwój i promocja standardów w wymianie międzynarodowej. Standardy ISO obejmują praktycznie wszystkie dziedziny produkcji przemysłowej. ISO odpowiada m.in. za rozwój i utrzymanie modelu połączeń systemów otwartych (OSI). Do ISO należą przedstawiciele większości dużych organizacji standaryzacyjnych na świecie, ISO jest powiązana z ONZ;

  4. Międzynarodowa Unia Telekomunikacyjna (International Telecommunications Union - ITU) - została założona w 1932 r. i zastąpiła Międzynarodowy Związek Telegraficzny oraz Międzynarodowy Związek Radiotelegrafii. Od roku 1947 ITU stała się wyspecjalizowaną agendą ONZ z siedzibą w Genewie. Działalność ITU obejmuje całokształt problemów związanych z rozwojem i upowszechnianiem telekomunikacji oraz obejmuje koordynację działalności państw w tym zakresie. W ramach ITU działa wiele grup problemowych (sektory), np. Sektor Normalizacji Telekomunikacji czy Sektor Rozwoju Telekomunikacji;

  5. Object Managment Group (OMG) - konsorcjum w skład którego wchodzi blisko 300 organizacji wspierających Object Managment Architecture (model opisujący standardy dotyczące aplikacji i środowisk zorientowanych obiektowo). Grupa jest zainteresowana głównie rozwijaniem standardów języków, interfejsów i protokołów, które mogą być wykorzystywane przez producentów do tworzenia aplikacji pracujących w wielu różnych środowiskach.

  1. Model OSI

Organizacja ISO opracowała Model Referencyjny Połączonych Systemów Otwartych (model OSI) w celu ułatwienia realizacji otwartych połączeń systemów komputerowych. Połączenia otwarte to takie, które mogą być obsługiwane w środowiskach wielosystemowych. Omawiany model jest globalnym standardem określania warstw funkcjonalnych wymaganych do obsługi tego typu połączeń. Model referencyjny OSI dzieli procesy zachodzące podczas sesji komunikacyjnej na siedem warstw funkcjonalnych, które zorganizowane są według naturalnej sekwencji zdarzeń zachodzących podczas sesji komunikacyjnej. Warstwy od 1 do 3 umożliwiają dostęp do sieci, a warstwy od 4 do 7 obsługują logistycznie komunikację końcową.

Nazwa warstwy modelu OSI

Numer warstwy

Aplikacji

7

Prezentacji

6

Sesji

5

Transportu

4

Sieci

3

Łącza danych

2

Fizyczna

1

Warstwa fizyczna. Warstwa najniższa. Jest ona odpowiedzialna za przesyłanie strumieni bitów. Odbiera ramki danych z warstwy 2, czyli warstwy łącza danych, i przesyła szeregowo, bit po bicie, całą ich strukturę oraz zawartość. Jest ona również odpowiedzialna za odbiór kolejnych bitów przychodzących strumieni danych. Strumienie te są następnie przesyłane do warstwy łącza danych w celu ich ponownego ukształtowania.

Warstwa łącza danych. Druga warstwa modelu OSI nazywana jest warstwą łącza danych. Jak każda z warstw, pełni ona dwie zasadnicze funkcje: odbierania i nadawania. Jest ona odpowiedzialna za końcową zgodność przesyłania danych. W zakresie zadań związanych z przesyłaniem, warstwa łącza danych jest odpowiedzialna za upakowanie instrukcji, danych itp. W tzw. ramki. Ramka jest strukturą rodzimą - czyli właściwą dla - warstwy łącza danych, która zawiera ilość informacji wystarczającą do pomyślnego przesyłania danych przez sieć lokalną do ich miejsca docelowego. Pomyślna transmisja danych zachodzi wtedy, gdy dane osiągają miejsce docelowe w postaci niezmienionej w stosunku do postaci, w której zostały wysłane. Ramka musi, więc zawierać mechanizm umożliwiający weryfikowanie integralności jej zawartości podczas transmisji. W wielu sytuacjach wysyłane ramki mogą nie osiągnąć miejsca docelowego lub ulec uszkodzeniu podczas transmisji. Warstwa łącza danych jest odpowiedzialna za rozpoznawanie i naprawę każdego takiego błędu. Warstwa łącza danych jest również odpowiedzialna za ponowne składanie otrzymanych z warstwy fizycznej strumieni binarnych i umieszczanie ich w ramkach. Ze względu na fakt przesyłania zarówno struktury, jak i zawartości ramki, warstwa łącza danych nie tworzy ramek od nowa. Buforuje ona przychodzące bity dopóki nie uzbiera w ten sposób całej ramki.

Warstwa sieci jest odpowiedzialna za określenie trasy transmisji między komputerem-nadawcą, a komputerem-odbiorcą. Warstwa ta nie ma żadnych wbudowanych mechanizmów korekcji błędów i w związku z tym musi polegać na wiarygodnej transmisji końcowej warstwy łącza danych. Warstwa sieci używana jest do komunikowania się z komputerami znajdującymi się poza lokalnym segmentem sieci LAN. Umożliwia im to własna architektura trasowania, niezależna od adresowania fizycznego warstwy 2. Korzystanie z warstwy sieci nie jest obowiązkowe. Wymagane jest jedynie wtedy, gdy komputery komunikujące się znajdują się w różnych segmentach sieci przedzielonych routerem.

Warstwa transportu, pełni funkcję podobną do funkcji warstwy łącza w tym sensie, że jest odpowiedzialna za końcową integralność transmisji. Jednak w odróżnieniu od warstwy łącza danych - warstwa transportu umożliwia tę usługę również poza lokalnymi segmentami sieci LAN. Potrafi, bowiem wykrywać pakiety, które zostały przez routery odrzucone i automatycznie generować żądanie ich ponownej transmisji. Warstwa transportu identyfikuje oryginalną sekwencję pakietów i ustawia je w oryginalnej kolejności przed wysłaniem ich zawartości do warstwy sesji.

Warstwa sesji, jest piątą warstwą modelu OSI. Jest ona rzadko używana; wiele protokołów funkcje tej warstwy dołącza do swoich warstw transportowych. Zadaniem warstwy sesji modelu OSI jest zarządzanie przebiegiem komunikacji podczas połączenia miedzy dwoma komputerami. Przepływ tej komunikacji nazywany jest sesją. Warstwa ta określa, czy komunikacja może zachodzić w jednym, czy obu kierunkach. Gwarantuje również zakończenie wykonywania bieżącego żądania przed przyjęciem kolejnego.

Warstwa prezentacji, jest odpowiedzialna za zarządzanie sposobem kodowania wszelkich danych. Nie każdy komputer korzysta z tych samych schematów kodowania danych, więc warstwa prezentacji odpowiedzialna jest za translację między niezgodnymi schematami kodowania danych. Warstwa ta może być również wykorzystywana do niwelowania różnic między formatami zmiennopozycyjnymi, jak również do szyfrowania i rozszyfrowywania wiadomości.

Warstwa aplikacji, jest najwyższą warstwą modelu OSI. Pełni ona rolę interfejsu pomiędzy aplikacjami użytkownika a usługami sieci. Warstwę tę można uważać za inicjującą sesje komunikacyjne.

  1. Lokalne sieci komputerowe

    1. Specyfika sieci lokalnych.

Sieci lokalne posiadają swoją specyfikę przede wszystkim w warstwach najniższych modelu OSI. W celu uzyskania dużych szybkości transmisji oraz małej stopy błędów stosuje się specyficzne rodzaje łączy i techniki transmisji, co znajduje swoje odzwierciedlenie w warstwach: fizycznej i liniowej. Wszystkie stacje dołączone do LSK(lokalna siec komputerowa) korzystają ze wspólnego medium transmisyjnego. Pojawia się, więc tutaj problem bezkolizyjnego dostępu do tego medium (np. te same stacje nie mogą zacząć jednocześnie nadawania). W celu rozwiązania tego problemu zdecydowano się na rozbicie warstwy liniowej na dwie podwarstwy:

- podwarstwę dostępu, niższą (odpowiedzialną za bezkonfliktowy dostęp do łączy),

- podwarstwę łącza logicznego, wyższą (realizującą pozostałe funkcje).

8802.1. Część ogólna

Podwarstwa łącza logicznego (LLC)

8802.2 Usługi i protokoły podwarstwy

Podwarstwa dostępu (MAC)

8802.3

Dostęp rywalizacyjny CSMA/CD.

8802.4

Przekazywanie uprawnienia w magistrali

TOKEN BUS

8802.5

Przekazywanie uprawnienia w pierścieniu

TOKEN RING

8802.7

Wirujące tacki SLOTTED RING

Warstwa

fizyczna

Szybkość 4 Mb/s

lub 16 Mb/s

Różne warianty rozmiaru tacki, liczby tacek, szybkości transmisji. Podstawowa szybkość 10 Mb/s

Niektóre zasady dostępu do łącza wymagają dodatkowych, specjalnych usług warstwy fizycznej. Nie można, łączyć w dowolny sposób rozwiązań odnośnie podwarstwy dostępu i warstwy fizycznej. Zalecenia i normy dotyczące LSK (obecnie są to już standardy) zebrano w dokumentach ISO o numerach 8802.X. X oznacza poszczególne warianty.

Rys. 1 Normy ISO

    1. Rodzaje transmisji, elementarne konfiguracje łączy.

Transmisja w paśmie podstawowym (baseband) - polega na przesłaniu ciągu impulsów uzyskanego na wyjściu dekodera (i być może lekko zniekształconego). Widmo sygnału jest tutaj nieograniczone. Jest to rozwiązanie dominujące w obecnie istniejących LSK.

Transmisja szerokopasmowa (broadband) polega na tym, że za pomocą przebiegu uzyskanego na wyjściu dekodera jest modyfikowany (modulowany) sygnał sinusoidalny o pewnej częstotliwości (zwanej częstotliwością nośną). Modulacji może podlegać dowolny parametr przebiegu sinusoidalnego: amplituda, częstotliwość lub faza. Tak zmodulowany przebieg sinusoidalny jest przekazywany w tor transmisyjny. Widmo takiego przebiegu mieści się w pewnym ściśle określonym przedziale częstotliwości, którego środkiem jest częstotliwość nośna, a szerokość nie przekracza dwukrotnej szybkości sygnalizacji (częstotliwości sygnału modulującego). Istnieją rozwiązania, które pozwalają jeszcze zawęzić to pasmo. Każde łącze charakteryzuje się pewnym pasmem przenoszenia sygnałów. Pasmo to dzieli się na części (kanały), a w każdej z nich przesyła się sygnał o innej częstotliwości nośnej. Można więc w jednym łączu przesyłać sygnał telewizyjny, informację cyfrową itd.

W każdej takiej konfiguracji może odbywać się transmisja:

  1. jednokierunkowa (simplex) - gdy łącze umożliwia propagację sygnału tylko w jednym kierunku. Odbiornik nie może przesłać odpowiedzi. Często ten rodzaj transmisji wykorzystywany jest w układach typu master-slave. Przykładem może być transmisja radiowa;

  2. dwukierunkowa (duplex) - w tym przypadku wyróżnia się transmisję naprzemienną (half duplex) - przesyłanie w dowolnym kierunku, ale tylko w jednym w danej chwili, wykorzystuje się system sygnalizacji wskazujący, że jedno urządzenie zakończyło nadawanie lub odbiór, transmisję w tym trybie można zrealizować przy użyciu kabla dwuprzewodowego (np. skrętka), typowy przykład takiej transmisji to komunikacja za pomocą CB - oraz transmisję równoczesną (full duplex) - możliwe jest przesyłanie jednoczesne sygnału w dwóch kierunkach bez jego zniekształcania, w sieciach cyfrowych konieczne są dwie pary przewodów do utworzenia połączenia.

W konfiguracjach wielopunktowych może się zdarzyć sytuacja, w której kilka nadajników zacznie równocześnie emisję sygnału, co spowoduje wzajemne zniekształcenie nadawanych sygnałów. Taka sytuacja nazywa się kolizją. W chwili kolizji całkowita moc sygnału w łączu znacznie się zwiększa, zarówno nadajnik jak i odbiornik muszą być odpowiednio przygotowane do takich warunków pracy. W niektórych rozwiązaniach LSK wprowadza się układy umożliwiające wykrycie kolizji. Działają one na ogół według jednej z dwóch zasad:

  1. analizowana jest moc sygnału odbieranego. Stwierdzenie przekroczenia przez tę moc pewnego poziomu progowego świadczy o wystąpieniu kolizji. Metoda ta jest zawodna w przypadku, gdy w miejscu zainstalowania odbiornika moc kolidujących sygnałów znacznie się różni;

  2. porównywany jest sygnał emitowany przez nadajnik z sygnałem odbieranym. Metoda ta jest możliwa do zastosowania tylko przez uczestników kolizji. Chcąc zapewnić jednoczesne wykrycie kolizji przez wszystkich uczestników korzystających z łącza narzuca się wymaganie emitowania specjalnego sygnału przez stację, która wykryła kolizję;

    1. Wyposażenie do transmisji danych.

Istnieje duże różnorodność sprzętu służącego do transmisji danych, określanego skrótem DCE (Data Communication Equipment) Najczęściej są one powiązanie z urządzeniami końcowymi DTE (Data Terminal Equipment). Urządzenia DCE znajdują się pomiędzy urządzeniami DTE i linią lub kanałem transmisyjnym, umożliwiają podłączenie urządzeń DTE do sieci komunikacyjnej oraz pełnią funkcję terminatora łącza i zapewniają w nim synchronizację. Przykładem urządzenia DCE jest modem.

Interfejsy urządzeń DCE i DTE zdefiniowane są w warstwie fizycznej modelu OSI. W urządzeniach DCE/DTE najpowszechniej stosowane są standardy przyjęte przez EIA: RS-232-C i RS-232-D oraz V.24 komitetu CCITT. Inne standardy to: EIA RS-366-A, CCITT X.20, X.21 i V.35.

  1. Rodzaje łączy i ich właściwości.

Okablowanie jest bardzo istotnym elementem sieci. Musi spełniać zarówno obecne jak i przyszłe wymagania odnośnie warunków transmisji danych, charakterystyki elektrycznej i topologii. W transmisji danych stosowane są dwa rodzaje mediów:

  1. media przewodowe - obejmują przewody metalowe (najczęściej miedziane) oraz światłowodowe;

  2. media bezprzewodowe - termin ten odnosi się do metod przesyłania sygnałów w powietrzu lub przestrzeni kosmicznej, kategoria ta obejmuje transmisję w podczerwieni i mikrofale;

W większości instalacji sieciowych stosuje się kable miedziane. Są stosunkowo niedrogie i umożliwiają w miarę szybkie transmisje.

    1. Rodzaje kabli metalowych (miedzianych).

  1. kabel prosty (straight cable) - zbudowany jest z miedzianych przewodów otoczonych izolacją. Kabli tego typu używa się do łączenia urządzeń peryferyjnych w transmisjach na niewielkie odległości, z małymi prędkościami. Kabli tego typu nie stosuje się w sieciach komputerowych;

  1. skrętka (twisted pair cable) - zbudowana jest z izolowanych przewodów, dwa przewody są splecione i tworzą medium, którym mogą być przesłane dane. Kabel jest złożony z pojedynczej pary takich przewodów lub z większej liczby takich par. W sieci telefonicznej stosuje się skrętkę nieekranowaną (Unshielded Twisted Pair - UTP). Skrętka ekranowana (Shielded Twisted Pair) zabezpieczona jest przed przesłuchami z zewnątrz. Przewody muszą być skręcone aż do samych punktów końcowych. Specyfikacja skrętki zawarta jest w standardzie EIA/TIA 586 Commercial Building Wiring odnoszącym się do okablowania budynków. Zdefiniowano tam następujące właściwości kabli:

Kable kategorii 5 oraz konstruowane zgodnie z opracowywanymi aktualnie (1994 r., USA) pozwalają na transmisję rzędu setek Mbit/s.

0x01 graphic

  1. kabel koncentryczny (coaxial cable) - zbudowany jest z litego miedzianego przewodu, otoczonego izolacją, przewodu ekranującego i zarazem uziemiającego oraz z zewnętrznej koszulki ochronnej. Kabel koncentryczny może przekazywać dane w sieci z prędkością do 350 Mbit/s. Dawniej kabel koncentryczny gwarantował większe szybkości transmisji niż skrętka. Obecne właściwości skrętki pozwalają na osiągnięcie takich szybkości jak przy wykorzystaniu kabla koncentrycznego, a nieraz nawet większych. Jednak za pomocą kabla koncentrycznego wciąż można wykonywać połączenia dłuższe niż z wykorzystaniem skrętki. Kabel koncentryczny nadaje się do sieci szerokopasmowych i pracujących w paśmie podstawowym.

0x01 graphic

0x01 graphic

    1. Kable światłowodowe.

Światłowód nie posiada licznych wad, które występowały w kablach metalowych: pojemność przewodu, tłumienie amplitudy sygnału (bardzo małe), przesłuch, odporny jest na elektromagnetyczne zakłócenia zewnętrzne, sam nie wytwarza pola elektromagnetycznego wokół siebie. Ta ostatnia cecha uniemożliwia monitorowanie (podsłuchiwanie) transmisji z zewnątrz.

Transmisja światłowodowa polega na przepuszczaniu przez włókno szklane światła. Optyczny rdzeń światłowodu wykonany jest z czystego dwutlenku krzemu. Nadajnikiem może być dioda świecąca lub laser, odbiornikiem jakiś fotodetektor. Kluczowym elementem światłowodu jest szklana powłoka rdzenia, która odbija światło do wewnątrz rdzenia. Światło przechodząc przez światłowód wielokrotnie odbija się od powłoki rdzenia. Im większy kąt odbicia tym światło dłużej przechodzi między końcami przewodu. Mimo, że opóźnienie wynosi miliardowe części sekundy (rzędu kilku, kilkudziesięciu nanosekund na kilometr), to długość światłowodu musi zostać ograniczona. Szybkość transmisji danych sięga Gbit/s.

Rodzaje światłowodów:

  1. plastikowy - działa na długościach obliczanych w metrach, tani, nie wymaga drogiego oprzyrządowania;

  2. powlekany plastikiem światłowód krzemiankowy - nieznacznie lepszy od plastikowego;

  3. włókno jednomodowe - prowadzi jedną wiązkę światła o jednej długości fali, używany do szczególnie długich połączeń, rdzeń ma małą średnicę i zapewnia dużą przepustowość na długich dystansach. Źródłem światła jest laser. Przewód najdroższy, najtrudniejszy w obsłudze, zapewnia jednak największe szybkości transmisji i umożliwia realizację najdłuższych segmentów połączeń;

  4. wielomodowy światłowód o skokowej zmianie współczynnika odbicia - prowadzi wiele wiązek światła o różnych częstotliwościach, cechuje się znaczną średnicą rdzenia i wysoką dyspersją (typowo: 15-30 nanosekund na kilometr). Wykorzystywany jest głównie w LSK, nadajnikiem jest dioda LED;

  5. wielomodowy o stopniowe zmianie współczynnika odbicia - wykonany jest z kilku warstw szkła o dyspersji pozwalającej na pokonanie długich dystansów (typowo: 1 nanosekunda na kilometr);

    1. Połączenia bezprzewodowe.

Połączenia bezprzewodowe realizowane są przy wykorzystaniu nadajników i odbiorników rozmieszczonych na terenie np. firmy i będących jej własnością. Radiowe urządzenie nadawczo-odbiorcze nazywane jest transceiver'em (transmitter/receiver). Bezprzewodowe połączenia w sieci lokalnej eliminują konieczność układania kabli, co przydatne jest w sieciach utworzonych tymczasowo. Użytkownicy z komputerami przenośnymi mogą poruszać się po obszarze objętym zasięgiem transceiver'a. Przykładowa konfiguracja bezprzewodowej sieci lokalnej może wyglądać tak, jak to pokazano na rysunku.

Bezprzewodowa transmisja danych może być realizowana przy użyciu jednej z trzech metod:

  1. transmisja w podczerwieni - metoda ta udostępnia szerokie pasmo transmisyjne, pozwala na przesyłanie sygnałów z bardzo dużą częstotliwością. Transmisja wykorzystująca promienie podczerwone realizowana jest wzdłuż linii widoczności, dlatego zarówno nadajnik jak i odbiornik muszą być skierowane do siebie lub też promienie muszą być wzajemnie zogniskowane. Tak, więc przy instalowaniu tego typu sieci należy uwzględnić strukturę i wzajemne położenie pomieszczeń. Ponieważ transmisja realizowana jest przy użyciu promieni podczerwonych, to może być zakłócona silnym światłem pochodzącym z innych źródeł. Typowa szybkość transmisji osiąga tutaj 10 Mbit/s;

  2. transmisja radiowa wąskopasmowa - metoda ta jest podobna do metod stosowanych w klasycznej radiofonii: zarówno nadajnik jak i odbiornik pracują w jednym wąskim paśmie częstotliwości. Sygnał rozprzestrzenia się na znacznym obszarze i może przenikać przez przeszkody - nie jest więc konieczne ogniskowanie sygnału. Mankamentem tej metody jest możliwość występowania zakłóceń spowodowanych odbiciami sygnału. Ponadto dla uniknięcia zakłóceń powodowanych przez inne urządzenia radionadawcze konieczne jest dokładne dostrojenie nadajnika i odbiornika na wybraną częstotliwość. Szybkość transmisji jest tutaj rzędu kilkunastu kbit/s;

  3. transmisja radiowa szerokopasmowa - sygnał generowany jest w szerokim paśmie częstotliwości. Chwilowy rozkład częstotliwości określany jest za pomocą kodu - wspólnego dla nadajnika i odbiornika. Moc sygnału emitowanego tą techniką jest niewielka. Szybkość transmisji kształtuje się na poziomie 250 kbit/s;

  4. transmisja mikrofalowa - transmisja tą metodą może się odbyć, gdy zapewniona jest wzajemna widoczność nadawcy i odbiorcy, może to być np. połączenie satelity ze stacją naziemną, łączność między dwoma budynkami, łączność na dużych otwartych obszarach, gdzie położenie kabla nie jest opłacalne (pustynie, bagna, duże jeziora). System transmisyjny wykorzystujący mikrofale składa się z dwóch anten kierunkowych, skierowanych na siebie, wysyłających wiązkę fal elektromagnetycznych i ogniskujących odebraną wiązkę fal. Maksymalna odległość między antenami nie powinna przekraczać 45 km. W przeciwieństwie do klasycznej transmisji radiowej anteny mikrofalowe skierowane są na jeden punkt. Stosowane częstotliwości transmisji zawierają się w przedziale 2 GHz - 25 GHz, przy czym wyższe częstotliwości wykorzystywane są prywatnie, na krótkich dystansach;

    1. Krosownica (Patch Panel).

Składa się z rzędów punktów zakończeniowych dla stacji roboczych. Administrator sieci może w łatwy sposób łączyć, przesuwać, testować i rozłączać elementy sieci (np. stacje robocze) - poprzez zmianę połączeń w krosownicy.

    1. Koncentrator (Concentrator Device).

Koncentrator jest urządzeniem służącym za centralny punkt przyłączenia terminali, komputerów lub urządzeń komunikujących. Może to być centralny punkt, w którym zbiegają się kable. Koncentrator łączy określoną liczbę linii wejściowych z pewną liczbą linii wyjściowych albo udostępnia jedno centralne połączenie komunikacyjne większej liczbie urządzeń. Koncentratory mogą być łączone ze sobą w struktury hierarchiczne. urządzenia, które są koncentratorami:

  1. procesory czołowe (front-end) - jest to komputer realizujący funkcje koncentratora, zazwyczaj z większą szybkością i obsługujący większą liczbę dołączonych urządzeń;

  2. huby (hubs) - koncentratory w sieciach lokalnych (opisane dalej);

  3. jednostki wspólnego dostępu do portu i selektory (port sharing units) - umożliwiają większej liczbie odległych terminali korzystanie ze wspólnego połączenia modemowego z komputerem lub systemem host. Jednostka taka działa pomiędzy terminalami a modemem;

  4. multipleksery - urządzenia, które przesyłają po jednej linii dane napływające z wielu innych urządzeń. Istnieje wiele typów multiplekserów, np.: multipleksery z podziałem czasu (przydziela kolejnym urządzeniom odcinki czasu w strumieniu danych), multipleksery z podziałem częstotliwości (wydzielają dla każdego urządzenia osobny kanał częstotliwości);

    1. Huby (Hubs).

Rys. 1.Hub aktywny.

Istnieje wiele urządzeń, które mogą być określane mianem „hub”. W najprostszej postaci hub jest urządzeniem, w którym zbiegają się przewody od stacji roboczych. Istnieją huby pasywne oraz aktywne:

  1. hub pasywny - posiada kilka portów do podłączenia komputerów, terminali i innych urządzeń. Cechą huba pasywnego jest to, że nie wzmacnia sygnałów - jest tylko skrzynką łączącą - i nie wymaga zasilania. Hubem pasywnym może być po prostu panel łączeniowy, czyli krosownica;

  2. hub aktywny - zazwyczaj posiada więcej portów od huba pasywnego. Regeneruje sygnały przechodzące od jednego urządzenia do drugiego. Może być używany jako regenerator sygnału (repeater);

Huby są zazwyczaj łączone z innymi hubami w strukturę hierarchiczną.

Rys. 2.Okablowanie strukturalne(struktura hierarchiczna).

Huby umożliwiają budowę okablowania strukturalnego i oferują następujące udogodnienia:

  1. umożliwiają łatwą przebudowę sieci;

  2. umożliwiają łatwą rozbudowę sieci;

  3. możliwość zastosowania w wielu technologiach sieciowych;

  4. umożliwiają scentralizowane zarządzanie i automatyczne zbieranie informacji o ruchu w sieci;

  5. realizują funkcje obsługi błędów;

  6. pozwalają na zwiększanie zasięgu sieci;

Naturalną topologią sieci wykorzystującej huby jest gwiazda.

Konstrukcja hubów przeszła długą ewolucję: od pierwszych hubów powtarzających do obecnego ich znaczenia - centralnego elementu okablowania strukturalnego, zapewniającego zarządzanie i monitorowanie całej sieci. Moduły wtykowe pozwalają na wykonanie podłączeń sieci lokalnych i rozległych. Umożliwiają wykorzystanie huba jako centrum okablowania dla piętra, budynku, osiedla czy sieci globalnej. Takie huby instalacyjne (wiring hubs) stanowią szkielet sieci. Ponieważ szkielet ten zamyka się w obrębie jednej skrzynki to określa się go mianem szkieletu skupionego (collapsed backbone). Huby instalacyjne są platformą łączącą wiele typów sieciowych modułów komunikacyjnych, posiadają funkcje administracyjne oparte na okienkowym interfejsie użytkownika. Funkcje te pozwalają na obrazowanie całej sieci lub jej fragmentu w aspekcie statystyki i informacji kontrolnych. Pulpity administracyjne dołączane są do hubów za pośrednictwem specjalnych łączy, dzięki czemu zarządzanie nimi jest możliwe nawet w wypadku awarii reszty sieci.

Huby pierwszej generacji były zwykłymi repeater'ami operującymi tylko z jednym medium transmisyjnym. Generalnie nie było możliwości obsługi protokołów zarządzania takich jak np. SNMP (Simple Network Managment Protocol). Huby te są wciąż obecne na rynku, stosowane są w małych sieciach lokalnych. Istnieją huby, które można umieścić bezpośrednio w złączu rozszerzającym serwera. Z tyłu takiej karty-huba podłącza się specjalny kabel pozwalający na przyłączenie stacji roboczych.

Huby drugiej generacji określa się jako huby inteligentne, gdyż realizują funkcje zarządzające. Huby te wyposażone są w płyty główne z kilkoma magistralami, dzięki czemu mają zdolność współpracy z różnymi mediami, pomiędzy którymi pełnią funkcje mostów. Spotyka się magistrale dla różnego typu sieci lub magistrale wielokanałowe - uniwersalne. Płyty zarządzane są zazwyczaj przez wydajne procesory RISC'owe. Huby te umożliwiają zbieranie informacji statystycznych na temat ruchu w poszczególnych modułach. Wśród hubów tej generacji zaczęły się pojawiać urządzenia realizujące funkcje protokołu SNMP. Nie zaimplementowano jeszcze funkcji pozwalających na organizowanie wewnątrz huba logicznych segmentów sieci lokalnej, co jest korzystne ze względów administracyjnych i wydajnościowych.

Huby trzeciej generacji to inaczej huby korporacyjne. Są one zdolne do obsługi wszelkich typów komunikacji międzysieciowej i okablowania. Są to urządzenia inteligentne, z szybkimi płytami głównymi, o znacznym stopniu modułowości. Zdolne są do obsługi szeregu modułów wtykowych, w tym dla połączeń z sieciami rozległymi i umożliwiających realizację zaawansowanych funkcji zarządzających. Huby te są bardzo niezawodne. Wiele z nich używa płyt z komutacją komórek, z prędkościami rzędu Gbit/s. Inne cechy hubów trzeciej generacji:

  1. segmentowanie płyty głównej w celu obsługi kilku sieci lokalnych;

  2. szybkie połączenia szkieletowe, realizujące połączenia międzysieciowe;

  3. zdolności komutacyjne, pozwalające na mikrosegmentację sieci lokalnej pomiędzy pojedyncze stacje robocze;

  4. dedykowane połączenia punkt-punkt pomiędzy węzłami sieci, pozwalające na transmisję wielkich ilości danych lub transmisji uzależnionych od czasu;

  5. funkcje zarządzania rozproszonego wbudowane w każdy z modułów, pozwalające na poprawianie wydajności sieci w warunkach znacznego obciążenia;

Inny podział hubów:

  1. huby dla grup roboczych - np. koncentrator w postaci karty rozszerzającej dla serwera;

  2. huby pośredniczące - np. skrzynka przyłączeniowa na każdym z pięter budynku. Ich zastosowanie jest opcjonalne, ale mogą stanowić bazę dla późniejszej rozbudowy sieci;

  3. huby korporacyjne - centralne miejsce, w którym zbiegają się połączenia od wszystkich segmentów końcowych. Pełnią ponadto rolę routera, mostka, umożliwiają łączenie z sieciami rozległymi.

Huby muszą być urządzeniami niezawodnymi. W tym celu wprowadza się np.:

  1. zasilanie awaryjne - wbudowane w hub;

  2. moduły wymienne w trakcie pracy - umożliwiają wymianę modułu bez wyłączania systemu;

  3. zarządzanie i zdalne administrowanie - np. za pomocą protokołu SNOP;

  4. instalacja hubów dublujących;

Huby umożliwiają osiągnięcie wysokiego poziomu bezpieczeństwa pracy sieci. Możliwe jest np. zablokowanie połączeń między określonymi stacjami oraz pomiędzy sieciami. Zapewnione jest filtrowanie adresów, podobnie jak w mostach. Niektóre huby pozwalają na odłączenie „intruzów”. Huby dysponujące zaawansowanymi funkcjami bezpieczeństwa umożliwiają powiązanie adresu programowego z adresem sprzętowym karty sieciowej w stacji roboczej. Wykorzystując to można zapewnić obsługę użytkownika tylko pod warunkiem, że działa na określonej stacji roboczej.

Huby realizują, jak wspomniano, różne funkcje zarządzające. Do takich należą: śledzenie pakietów danych i pojawiających się błędów oraz ich składowanie w bazie danych huba (MIB - Managment Information Base). Program zarządzający co pewien czas sięga do tych danych i prezentuje je administratorowi. Po przekroczeniu pewnych zadanych wartości progowych (np. przekroczenie progu natężenia ruchu w sieci), administrator zostaje zaalarmowany i może podjąć kroki zaradcze. Większość hubów zapewnia obsługę protokołu SNMP, niektóre protokołów: CMIP (Common Managment Information Protocol), będący standardem ISO, oraz NetView firmy IBM.

Huby są zwykle zarządzane za pomocą aplikacji graficznych, pozwalających administratorowi na zarządzanie każdym urządzeniem i węzłem sieci z jednej stacji zarządzającej. Oprogramowanie zarządzające bazuje zwykle na systemie UNIX. Funkcje zarządzające huba umożliwiają także usługi:

  1. automatyczne wyłączenie węzłów zakłócających pracę sieci;

  2. izolowanie portów dla potrzeb testów, np. wtedy gdy węzeł wysyła błędne pakiety - izoluje się go;

  3. włączanie i wyłączanie stacji roboczych w określonych godzinach i dniach tygodnia;

  4. zdalne zarządzanie elementami sieci;

Oprogramowanie zarządzające dostarcza wielu narzędzi przetwarzających zebrane informacje i obrazujących je w przystępnej formie wykresów bądź tabel.

Technologia hubów zmierza w kierunku techniki przełączania. Istnieje tendencja do umieszczania w jednej obudowie wieloprotokołowości, routingu, mostkowania, techniki sieci rozległych, funkcji zarządzających oraz funkcji analizowania protokołów. Szybkości przesyłania danych przez urządzenia podłączone do huba wymagają technik coraz szybszego przełączania, np. w sieci ATM, umożliwiającej przesyłanie danych z szybkościami rzędu Gbit/s. Technika ATM została już wprowadzona do hubów korporacyjnych, teraz wprowadza się ją do hubów pośredniczących i hubów grup roboczych.

  1. Regenerator (repeater).

Repeater jest prostym urządzeniem pomocniczym, regenerującym sygnał przesyłany kablem, co pozwala na zwiększenie długości połączenia, a co za tym idzie - zwiększenie rozpiętości sieci. Repeater nie zmienia w żaden sposób struktury sygnału, poza jego wzmocnieniem. Repeater jest nieinteligentnym (dumb) urządzeniem, które charakteryzuje się następującymi cechami:

  1. używany jest głównie w liniowych systemach kablowych;

  2. działa na najniższym poziomie stosu protokołów - na poziomie fizycznym;

  3. dwa segmenty sieci, połączone za pomocą repeater'a, muszą używać tej samej metody dostępu do medium;

  4. segmenty sieci połączone za pomocą repeater'a stają się częścią tej samej sieci i mają te same adresy sieciowe (węzły w segmentach rozszerzających sieć muszą mieć różne adresy od węzłów w segmentach istniejących);

  5. przekazują pakiety z prędkością transmisji w sieci;

W repeater'ach należy raczej widzieć urządzenia, które służą do przyłączenia do sieci stacji dalej położonych, niż urządzenia pozwalające na zwiększenie liczby stacji w sieci.

  1. Przełącznica (matrix switch).

0x01 graphic

Jest to urządzenie posiadające pewną liczbę portów wejścia oraz portów wyjścia. Służy ona do połączenia wybranego wejścia w określonym wyjściem. Rysunek przedstawia przełącznicę 4 X 4 łączącą linie modemowe z komputerami. Możliwe są oczywiście rozwiązania o większej liczbie portów: 8 X 8, 16 X 16 itd. Przełącznice są obecnie realizowane na poziomie mikroprocesora i umożliwiają utworzenie połączenia w bardzo krótkim czasie. Przełącznica może służyć do łączenia ze sobą segmentów w sieci (np. hub przełączający). Układy te charakteryzują się ponadto bardzo dużą przepustowością.

  1. Topologie sieci lokalnych.

Topologia sieci określa fizyczny układ sieci: rozmieszczenie jej elementów oraz połączenia między nimi oraz stosowane przez stacje robocze (węzły sieci) metody odczytywania i wysyłania danych. Topologie LSK to głównie topologie podsieci, które są elementami sieci złożonych. Poniżej zostaną opisane podstawowe topologie sieci.

    1. Topologia z magistralą liniową.

Jest to konfiguracja, w której do pojedynczego kabla głównego (magistrala, szyna), stanowiącego wspólne medium transmisyjne, podłączone są wszystkie węzły. Na ogół użyte łącza są jednorodnymi łączami elektrycznymi. Dopuszczalna długość kabla oraz liczba stacji są jawnie ograniczone w zależności od typu kabla. Nadawane sygnały docierają do wszystkich stacji poruszając się we wszystkich możliwych kierunkach. Czas propagacji sygnału zależy wyłącznie od długości kabla. W danej chwili tylko jeden węzeł może wysyłać dane w trybie rozgłaszania. Gdy sygnał dociera do końca kabla zostaje wygaszony przez znajdujący się tam terminator, dzięki czemu nie występują odbicia. Dane poruszają się nie przechodząc przez węzły sieci. Do zalet tego typu konfiguracji sieci należą: niewielka długość użytego kabla i prostota układu przewodów. Wyłączenie lub awaria jednej stacji nie powoduje zakłóceń w pracy sieci. Wadą topologii z magistralą jest niewielka liczba punktów koncentracji, w których można by było diagnozować sieć, lokalizować uszkodzenia oraz zarządzać siecią. Niekorzystną cechą tej topologii jest to, że sieć może przestać działać po uszkodzeniu kabla głównego w dowolnym punkcie. W celu wyeliminowania tej wady wprowadza się nieraz dodatkowy kabel główny (komplikuje organizację pracy sieci, zwiększa jej koszt).

    1. Topologia gwiazdy.

Sieć zawiera centralny element (hub), do którego przyłączone są wszystkie węzły. Cały ruch w sieci odbywa się przez hub. Sygnały mogą być nadawane z huba do wszystkich stacji lub tylko do wybranych. Odległość każdej stacji od huba oraz liczba stacji do niego podłączonych są ograniczone. Czas propagacji sygnału nie zależy od liczby stacji. Nadane przez hub sygnały zanikają samoczynnie. Możliwe jest wystąpienie kolizji, która może być łatwo wykryta przez hub i zasygnalizowana wszystkim stacjom. Zaletą tej topologii jest łatwość konserwacji, wykrywania uszkodzeń, monitorowania i zarządzania siecią. Awaria jednej stacji nie wpływa na pracę reszty sieci. Układ okablowania jest łatwo modyfikowalny (łatwo dołączyć stację roboczą), ale jego koszt jest stosunkowo duży (potrzeba duże ilości kabla w celu podłączenia każdej stacji osobno). Należy również zauważyć, że hub jest centralnym elementem sieci i jego ewentualna awaria paraliżuje całą sieć. Wyróżnia się konfiguracje gwiaździste aktywne (sygnał w hubie jest wzmacniany i regenerowany) i bierne.

    1. Topologia pierścienia.

W topologii pierścienia węzły łączy się za pomocą jednego nośnika informacji w układzie zamkniętym. Okablowanie nie ma żadnych zakończeń (np. terminatorów), ponieważ tworzy krąg.

0x01 graphic

W ramach jednego pierścienia można stosować różnego rodzaju łącza. Długość jednego odcinka łącza dwupunktowego oraz liczba takich łączy są ograniczone. Każda stacja jest wyposażona w tzw. retransmiter, którego elementarną funkcją jest regenerowanie sygnału nadchodzącego od stacji poprzedniej w celu przekazania go stacji następnej. Retransmiter może modyfikować niektóre pozycje odebranego ciągu bitów, wstrzymywać proces regeneracji, udostępniać odebrane dane własnej stacji lub może nadawać do następnika ciąg bitów przygotowanych przez własną stację. Jak widać możliwe jest wystąpienie kolizji. Potrzebny jest więc pewien algorytm ustalający zasady wprowadzania danych do pierścienia. Informacja wprowadzona do sieci musi być usunięta przez jeden z węzłów - inaczej niepotrzebnie krążyłaby w sieci. Sygnał przechodzi przez poszczególne węzły i jest w nich wzmacniany. Czas propagacji sygnału jest tutaj zależny od liczby węzłów. Dane poruszają się w pierścieniu w jednym kierunku. Zaletą tej topologii jest mniejsza długość kabla niż w topologii gwiaździstej. Awaria jednej stacji lub łącza może spowodować awarię całej sieci. Trudniejsza jest diagnostyka, a modyfikacja (dołączenie stacji) wymaga wyłączenia całej sieci.

W celu wyeliminowania niektórych wad topologii pierścienia stosuje się przy każdym retransmiterze tzw. by-pass, czyli obejścia. Styki retransmitera zostaną otwarte jedynie w wypadku podania napięcia na uzwojenia przekaźników, co może nastąpić wówczas, gdy prawidłowo działa zasilanie retransmitera oraz prawidłowo zostały wykonane pewne testy poprawności działania retransmitera. Rozwiązanie to jest kłopotliwe np. wtedy gdy zastosuje się światłowody.

Często stosuje się konfigurację podwójnego przeciwbieżnego pierścienia. Każda para stacji jest dodatkowo sprzężona dodatkowym łączem o kierunku transmisji przeciwnym do kierunku transmisji w łączu głównym. W stanie normalnej pracy sieci pierścień pomocniczy nie jest używany. Jeśli w pewnym miejscu takiej sieci kabel zostanie przerwany - następuje automatyczna rekonfiguracja pierścienia i sygnał jest transmitowany w przeciwnym kierunku. Umożliwia to kontynuację pracy sieci.

    1. Topologia drzewa.

Topologia drzewa (zwana również topologią rozproszonej gwiazdy) jest utworzona z wielu magistrali liniowych połączony łańcuchowo. Na początku jedną magistralę liniową dołącza się do huba, dzieląc ją na dwie lub więcej magistral. Proces dzielenia można kontynuować, tworząc dodatkowe magistrale liniowe wychodzące z magistral odchodzących od pierwszej magistrali, co nadaje topologii cechy topologii gwiazdy. Zaletami topologii drzewa są: łatwość rozbudowy oraz ułatwienie lokalizacji uszkodzeń. Wadą jest zależność pracy sieci od głównej magistrali.

0x01 graphic

    1. Topologia pierścień-gwiazda.

Topologia ta łączy atrybuty topologii gwiazdy i pierścienia. Centralnym punktem tak skonfigurowanej sieci jest pierścień, nazywany również centrum okablowania. Centra okablowania mogą znajdować się w jednym miejscu sieci (w koncentratorze) lub mogą być rozproszone w wielu miejscach (wiele koncentratorów połączonych ze sobą przy użyciu złączy oznaczonych jako ring-in - wejście oraz ring-out - wyjście pierścienia), ale muszą tworzyć pełne połączenie fizyczne. Jeśli centrum okablowania zostaje przerwane to sieć przestaje działać. Węzły sieci dołącza się do pierścienia (za pomocą kabla z dwoma przewodami) i tworzą one gwiaździsty element topologii. Zaletą takiej konfiguracji jest to, że odłączenie węzła nie powoduje awarii sieci. W momencie dołączania nowej stacji nie trzeba przerywać pracy sieci. Wadą tej konfiguracji jest znaczne zwiększenie długości kabla w porównaniu z konfiguracją pierścieniową.

    1. Topologia gwiazda-magistrala.

Jest to konfiguracja sieci, w której grupy stacji roboczych, połączonych w gwiazdy, podłączone są do odcinków kabli głównych, stanowiących magistralę.

  1. Protokół sieciowy

Protokół (ang. protocol) - Zbiór sygnałów używanych przez grupę komputerów podczas wymiany danych (wysyłania, odbierania i kontroli poprawności informacji). Komputer może używać kilku protokołów. Np. jednego do komunikacji z jednym systemem, a drugiego z innym.
Protokołem w sieci komputerowej nazywamy zbiór powiązań i połączeń jej elementów funkcjonalnych. Tylko dzięki nim urządzenia tworzące sieć mogą się porozumiewać. Podstawowym zadaniem protokołu jest identyfikacja procesu, z którym chce się komunikować proces bazowy. Z uwagi na to, że zwykle w sieci pracuje wiele komputerów, konieczne jest podanie sposobu określania właściwego adresata, sposobu rozpoczynania i kończenia transmisji, a także sposobu przesyłania danych. Przesyłana informacja może być porcjowana - protokół musi umieć odtworzyć informację w postaci pierwotnej. Ponadto informacja może z różnych powodów być przesłana niepoprawnie - protokół musi wykrywać i usuwać powstałe w ten sposób błędy. Różnorodność urządzeń pracujących w sieci może być przyczyną niedopasowania szybkości pracy nadawcy i odbiorcy informacji - protokół powinien zapewniać synchronizację przesyłania danych poprzez zrealizowanie sprzężenia zwrotnego pomiędzy urządzeniami biorącymi udział w transmisji. Ponadto z uwagi na możliwość realizacji połączenia między komputerami na różne sposoby, protokół powinien zapewniać wybór optymalnej - z punktu widzenia transmisji - drogi.
Protokoły sieciowe - zapewniają usługi łączy systemów komunikacyjnych, obsługują adresowanie, informacje routingu, weryfikację błędów oraz żądania retransmisji. Obejmują także procedury dostępu do sieci, określone przez wykorzystywany rodzaj sieci. Najpopularniejsze protokoły sieciowe to:

• IP (Internet Protocol), część zestawu protokołów TCP/IP,
• APPN (Advanced Peer-to-Peer Networking) firmy IBM,
• CONS (OSI Connection-Oriented Network Service),
• CLNS (OSI Connectionless Network Service),
• IPX, część zestawu protokołów SPX/IPX firmy Novell,
• Interfejsy Microsoft NetBEUI,
• AppleTalk DDP (Datagram Delivery Protocol).
Trzy najczęściej używane protokoły w sieciach lokalnych i w internecie to TCP/IP, SPX/IPX i NetBEUI

    1. TCP/IP

OSI - model OSI, czyli powiązania między protokołami TCP/IP. Chyba najczęściej używany, zarówno dla sieci lokalnych jak i połączenia z internetem.

• TCP - Protokół sterowania transmisją (ang. Transmission Control Protocol) jest protokołem obsługi połączeniowej procesu użytkownika, umożliwiającym niezawodne i równoczesne (ang. full-duplex) przesyłanie strumienia bajtów. W większości internetowych programów użytkowych stosuje się protokół TCP. TCP korzysta z protokołu IP, więc całą rodzinę protokołów nazywamy TCP/IP.
• UDP - Protokół datagramów użytkownika (komunikaty przesyłane między systemami jeden niezależnie od drugiego) (ang. User Datagram Protocol) jest protokołem obsługi bezpołączeniowej procesów użytkownika. W odróżnieniu od protokołu TCP, który jest niezawodny, protokół UDP nie daje gwarancji, że datagramy UDP zawsze dotrą do celu.
• ICMP - Protokół międzysieciowych komunikatów sterujących (ang. Internet Control Message Protocol) obsługuje zawiadomienia o błędach i informacje sterujące między bramami (ang. gateway) a stacjami (ang. host). Chociaż komunikaty ICMP są przesyłane za pomocą datagramów IP, są one zazwyczaj generowane i przetwarzane przez oprogramowanie sieciowe TCP/IP, a nie przez procesy użytkownika.
• IP - Protokół międzysieciowy (ang. Internet Protocol) obsługuje doręczanie pakietów dla protokołów TCP, UDP oraz ICMP. Procesy użytkownika normalnie nie muszą komunikować się z warstwą IP.
• ARP - Protokół odwzorowania adresów (ang. Address Resolution Protocol) służy do odwzorowania adresów internetowych na adresy sprzętowe. Ten protokół i protokół RARP nie jest używany we wszystkich sieciach, lecz tylko w niektórych.
• RARP - Protokół odwrotnego odwzorowywania adresów (ang. Reverse Address Resolution Protocol) służy do odwzorowywania adresów sprzętowych na adresy internetowe.

    1. IPX/SPX

IPX/SPX - jest to zestaw protokołów firmy Novell, bierze on nazwę od swoich dwóch głównych protokołów: międzysieciowej wymiany pakietów IPX i sekwencyjnej wymiany pakietów SPX. Ten firmowy stos protokołów został oparty na protokole systemów sieciowych firmy Xerox, wykorzystywanym w pierwszej generacji Ethernet. Wymiana IPX/SPX zyskała na znaczeniu we wczesnych latach 80, jako integralna część systemu Novell Netware. Netware stał się faktycznym standardem sieciowego systemu operacyjnego dla sieci lokalnych pierwszej generacji. Protokół IPX w dużym stopniu przypomina IP. Jest bezpołączeniowym protokołem datagramowym, który nie wymaga ani nie zapewnia potwierdzenia każdego transmitowanego pakietu. Protokół IPX polega na SPX w taki sam sposób, w jaki protokół IP polega na TCP w zakresie porządkowania kolejności i innych usług połączeniowych warstwy 4. Stos protokołów IPX/SPX obejmuje cztery warstwy funkcjonalne: dostępu do nośnika, łącza danych, Internetu i aplikacji. Głównym protokołem warstwy aplikacji jest protokół rdzenia NetWare ( NCP). Protokół NCP można bezpośrednio sprzęgnąć zarówno z protokołem SPX, jak i IPX. Jest wykorzystywany do drukowania, współdzielenia plików, poczty elektronicznej i dostępu do katalogów. Innymi protokołami warstwy aplikacji są: protokół informacyjny trasowania, firmowy protokół ogłoszeniowy usługi i protokół obsługi łącza systemu NetWare. Protokół warstwy Internetu SPX jest protokołem połączeniowym i może być wykorzystywany do przesyłania danych między klientem serwerem, dwoma serwerami czy dwoma klientami. Tak jak w przypadku TCP, protokół SPX zapewnia niezawodność transmisjom IPX, zarządzając połączeniem i udostępniając sterowanie strumieniem danych, kontrolę błędów i porządkowanie kolejnych pakietów.

    1. NetBEUI

NetBEUI - interfejs NetBEUI został opracowany przez IBM i wprowadzony na rynek w 1985 roku. Jest stosunkowo małym ale wydajnym protokołem komunikacyjnym LAN. NetBEUI jest wyłącznie protokołem transportu sieci LAN dla systemów operacyjnych Microsoft. Nie jest trasowany. Dlatego jego implementacje ograniczają się do warstwy 2, w których działają wyłącznie komputery wykorzystujące systemy operacyjne firmy Microsoft. Aczkolwiek staje się to coraz mniejszą przeszkodą, to jednak ogranicza dostępne architektury obliczeniowe i aplikacje technologiczne. Zalety korzystania z protokołu NetBEUI są następujące: Komputery korzystające z systemów operacyjnych lub oprogramowania sieciowego firmy Microsoft mogą się komunikować. NetBEUI jest w pełni samodostrajającym się protokołem i najlepiej działa w małych segmentach LAN. Ma minimalne wymagania odnośnie pamięci. Zapewnia doskonałą ochronę przed błędami transmisji, a także powrót do normalnego stanu w razie ich wystąpienia. Wadą protokołu NetBEUI jest fakt, że nie może być trasowany i niezbyt dobrze działa w sieciach WAN.


Spis treści:

1. Wprowadzenie.



Wyszukiwarka

Podobne podstrony:
Praca dyplomowa Sieć komputerowa w oparciu o system Linux i protokół Samba- calosc, Zespół Szkół Pon
praca dyplomowa sieci komputerowe GDOXII4V6BM7D5VEI6ISJKWUIZ3VHR4X7YX6U5I
praca dyplomowa ?zpieczeĺƒstwo?nych w sieciowych systemach komputerowych [inzynierska] 5AVN62WTY3RD
Praca Dyplomowa(2) Sieci Komputerowe, Informatyka
Praca Dyplomowa BezpieczeĹ stwo SystemĂłw Komputerowych A Hakerzy, prace doktorskie, magisterskie, P
praca dyplomooww - Metodyka Tworzenia Stron WWW, komputery, sieci komputerowe
Prezentacja praca dyplom
Praca dyplomowa Strona tytułowa etc
PRACA DYPLOMOWA BHP - ORGANIZACJA PRACY W PSP, TEMATY PRAC DYPLOMOWYCH Z BHP
praca dyplomowa 1 strona wzor, Szkoła, prywatne, Podstawy informatyki
d druku BIBLIOGRAFI1, cykl VII artererapia, Karolina Sierka (praca dyplomowa; terapia pedagogiczna z
Praca dyplomowa(1)
streszczenie panelu, Prace dyplomowe i magisterskie, praca dyplomowa, materiały z internetu
Co charakteryzuje sieć komputerową(1)
praca dyplomowa BR5VQ5NYN263L77S7YKAVS66LCHECBHKF2E3GEQ
praca dyplomowa informatyka programowanie 7B5PTOE5KXERFXSEJISGCMFJDQ5X6LRRZEBNOJY
praca dyplomowa

więcej podobnych podstron