wszystko (10)


Uwagi ogólne:

Generatorami nazywamy układy elektroniczne, których zadaniem jest optymalne wytwarzanie określonych sygnałów elektronicznych. W tym rozumieniu wzmacniacz, który utracił stabilność i wytwarza pewne drgania, nie powinien być nazywany generatorem, pomijając fakt, że wskutek ich generacji uległa zaburzeniu jego podstawowa funkcja, tj. wzmacnianie, to nie wytwarza on tych drgań w sposób optymalny i kontrolowany.

Generatory klasyfikujemy według następujących kryteriów:a)Ze względu na kształt sygnału wyjściowego na: sinusoidalne i impulsowe b)Ze względu elementy decydujące o częstotliwości drgań na: LC i RC i elektromechaniczne np. kwarcowe c)Ze względu na zastosowany element nieliniowy na: diodowe i tranzystorowe d)Ze względu na sposób wzbudzenia drgań na: samowzbudne i obcowzbudne e)Ze względu na mechanizm podtrzymywania drgań na: układy ze sprzężeniem zwrotnym(sprzężeniowe) i z ujemną rezystancją.

Aby generowanie drgań przebiegało optymalnie, trzeba określić kryteria optymalności zależne od wymagań stawianych sygnałowi wyjściowemu, takich jak (kształt sygnału lub jego widmo, stałość częstotliwości, dokładność częstotliwości, czas stabilizacji, moc wyjściowa, poziom harmonicznych, sprawność energetyczna, dopuszczalny poziom fluktuacji amplitudy i częstotliwości, zakres generowanych częstotliwości i inne)

Stałość częstotliwości określa się jako zmianę częstotliwości generowanego przebiegu zachodzącą w określonym czasie. Rozróżnia się stałość bezwzględną i względną. Jeżeli f0 jest wartością częstotliwości sygnału w początku okresu obserwacji, natomiast fi - wartością w pewnej chwili t­i­ , to stałością bezwzględną nazywamy wartość Δf(t). Δf(t)=f­i­-f­0­ a stałością względną δf(t)=Δf(t)/f­0­

Ponieważ stałość częstotliwości jest funkcją czasu, więc jej wartość, najczęściej przyjmowaną jako względną, można określić w krótkim lub długim czasie i dlatego rozróżnia się stałość krótkoterminową(określaną zwykle w przedziale obserwacji minuta lub mniej) i długoterminową (określaną zwykle w przedziale obserwacji doba lub więcej).

Proste generatory RC mają zwykle długoterminową stałość częstotliwości rzędu 10-2, zaś LC w granicach od 10-3 do 10-5. Stałość generatorów kwarcowych jest zawarta w przedziale od 10-6 do 10-10. Atomowe i molekularne wzorce częstotliwości pozwalają zapewnić stałość nie gorszą niż 10-12. Dokładność częstotliwości generatora to względny uchyb jego częstotliwości w odniesieniu do ustalonego wzorca. Czasem stabilizacji nazywamy czas mierzony od momentu włączenia zasilania generatora, po upływie którego spełnia on wymaganie dotyczące dobowej stałości częstotliwości z ustaloną dokładnością.

Generatory LC:

Po wlaczeniu zasilania generatora drgania ustalaja swoja amplitude po upływie pewnego czasu, zwanego czasem trwania procesu przejściowego.Przebieg napiecia wyjściowego przedstawiono na rys:

0x01 graphic

Proces wytwarzania drgan dzielimy na 3 etapy: początkowy, narastania drgan i stanu ustalonego.Na etapie początkowym sygnaly zmienne na zlaczach tranzystora są na tyle małe, ze ten element i układ można traktowac jako liniowy i stosowac analize liniowa.Dlatego funkcje transmisyjne układu wyznaczamy wykorzystując parametry roczniczkowe lub macierzowe tranzystora.W czasie narastania drgan stosuje się tutaj analize nieliniowa.Do wyznaczenia w stanie ustalonym wykorzystuje się fakt, ze przy duzych dobrociach obwodow rezonansowych generatora w przebiegu wyjściowym dominuje skladowa podstawowa.Mozna wiec zastosowac analize quasi-liniowa.W rzeczywistości istnienie harmonicznych wpływa na przebieg sygnalu prowadzac do zmiany jego częstotliwości w stosunku do oczekiwanej.Nazywa się to nieliowa poprawka częstotliwości.

Korzystajac z równania teorii sprzężenia zwrotnego

0x01 graphic
zauwazmy ze jeśli mianownik dazy do jedności to wzmocnienie układu dazy do nieskończoności.Poniewaz 0x01 graphic
∞ to 0x01 graphic

Co oznacza ze na wyjsciu układu można otrzymac

Niezerowe napiecie 0x01 graphic
nawet przy braku syngalu z generatora.Uklad ze sprzężeniem zwrotnym bez wymuszenia może wytworzyc przebieg na wyjsciu jeśli stosunek zwrotny0x01 graphic
który jest ogolnym warunkiem generacji.W ogolnym przypadku transmitancje toru wzmacniającego 0x01 graphic
i toru sprzężenia zwrotnego 0x01 graphic
sa wielkosciomi zespolonymi.Aby ogolny warunek generacji był spełniony musza być spełnione jednoczesnie 2 warunki 0x01 graphic
pierwszy to warunek amplitudy a drugi to warunek fazy.Jesli sygnal wyjściowy po przejsciu przez tor sprzężenia zwrotnego zostanie stłumiony 0x01 graphic
-krotnie to tor wzmacniajacy musi pokryc te straty , zapewniając wzmocnienie 0x01 graphic
jest to wartość minimalna wzmocnienia.Zmniejszenie wzmocnienia spowoduje zanikanie drgan dlatego warunek amplitudy jest spełniany z nadmiarem często nawet o 100% wiecej co zapewnia możliwość narastania drgan.

Warunek fazy: jeśli synal wejściowy po przejsciu przez tor wzmacniajacy dozna przesuniecia fazy 0x01 graphic
to tor sprzężenia zwrotnego musi wprowadzac przesuniecie fazy0x01 graphic
takie aby stanowilo uzupełnieni do warunku 0x01 graphic
,.Warunek fazy jest spełniony dla scisle określonej czestotliowsci.

Liniowa teoria generacji: Okreslenie warunkow generacji poprzez praktyczny sposób realizacji.Na podstawie wzmacniacza selektywnego LC z petla sprzężenia zwrotnego raz wykres fazowy.

0x01 graphic
0x01 graphic

Zakladamy ze w etapie początkowym poziom sygnalu jest maly i stosujemy analize liniowa oraz f pracy układu jest tak mala ze ja pomijamy.Napiecie na wyjsciu układu wzmacniacza z równoległym obwodem rezonansowym 0x01 graphic
gdzie 0x01 graphic
jest nachyleniem charakterystyki tranystora Zc impedancja obwodu kolektorowego.

Z rysunku charakterystyka fazowa wynika ze po zamknieciu klucza K warunek fazy nie jest spełniony w calym przedziale częstotliwości w związku z tym niemozliwa jest realizacja generatora wg schematu z rys w układzie z obwodem rez składającym się z 2 elementow reaktancyjnych.

Napiecie na kolektorze tranz 0x01 graphic
gdzie Zc=0x01 graphic

A napiecie na wyjsciu dzielnika impedancyjnego 0x01 graphic
transmitancja calego układu od wejścia do wyjscia K(jω)=0x01 graphic
=0x01 graphic

Aby wyznaczyc charakterystyke argumentu, należy okreslic charakter poszczególnych reaktancji.Przyjmujemy ze 0x01 graphic
ma charakter pojemnościowy, a 0x01 graphic
indukcyjny.Uklad po zamknieciu klucza przeksztalca się do postaci jak na rys poniżej gdzie rezystancja 0x01 graphic
reprezentuje straty cewki a kondensator potraktowane jako idealne.Jest to układ ze sprzężeniem indukcyjnym

0x01 graphic
0x01 graphic

Galaz L2C3 ma charakter pojemnościowy a powyżej 0x01 graphic
charakter indukcyjny.Mamy tu doczynienia z obwodem 2 rezonansowym.Przebieg charakterystyki fazowej dzielnika impedancyjnego obwodu kolektorowego przedstawia krzywa b.Przebieg char fazowej obwodu kolektorowego z uwzględnieniem przesuniecia faz przedstawia krzywa a.Wypadkowa krzywa fazowa to wykres c.

Z rysunku wynika ze warunek fazy jest spełniony tylko dla częstotliwości 0x01 graphic
dla ktorej sumaryczne przesuniecie fazy wynosi 2π.Jest to struktura Colpittsa (gen ze sprzężeniem indukcyjnym lub z dzielona pojemnoscia)Jest to układ w którym miedzy baza a emiterem oraz kolektorem a emiterem wlaczona jest pojemność a miedzy kolektorem a baza indukcyjność.Uklad ze sprzężeniem pojemnościowym

0x01 graphic
0x01 graphic

Generator Hartleya który także spelnia warunek fazy dla konkretnej częstotliwości.Jest to generator ze sprzężeniem pojemnościowym lub z dzielona indukcyjnością.

Generator Meissnera lub ze sprzężeniem transformatorowym.Dla częstotliwości rez na obwodzie rezonans otrzymujemy sygnal przsuniety o π dodatkowe przesuniecie fazy zapewnia transformator z odpowiednio podlaczonymi poczatkami uzwojen.

0x01 graphic

Fizyczna realizowalność warunku amplitudy rozpatrzymy na przykładzie generatora Colplittsa

Schemat gen Colpittsa do wyznaczania warunkow amplitudy

0x01 graphic

Możemy przyjąć ze 0x01 graphic
w przybliżeniu. Gdzie gm jest nachyleniem charakterystyki tranzystora.

O poziomie sygnalu sprzężenia zwrotnego decyduje dzielnik reaktancyjny LC2 którego transmitancja 0x01 graphic
dla cewki o duzej dobroci częstotliwość dla ktorej jest spełniony warunek fazy jest zbiezna z czest rezonansowa.Znajac transmitancje toru wzmacniającego i toru sprzężenia zwrotnego można wyznaczyc stosunek wzrotny 0x01 graphic
.Znajac punkt pracy tranzystora i rezystancje obciążenia można okreslic tylko stosunek pojemności.Brak drugiego równania powoduje ze do wyznaczenia wartości pojemności należy przyjąć wartość indukcyjnosci i z warunku rezonansu zbieżnego z warunkiem fazy.pojemnosc zastepcza obwodu rezonansowego wynosi 0x01 graphic

Zas stosunek pojemności wynosi 0x01 graphic
=0x01 graphic
majac takie dane możemy wyznaczyc pojemności 0x01 graphic

W tym generatorze pojemności pasożytnicze elementu aktywnego mogą niekiedy uniemożliwić spełnienie warunków generacji. Pojemności Cwe i Cwy są podłączone równolegle do indukcyjności odpowiednio L2 i L1 i tworzą równoległe obwody rezonansowe o pulsacjach rezonansowych

0x01 graphic
0x01 graphic

0x08 graphic
0x08 graphic
Dlatego układ będzie generatorem, jeśli założona częstotliwość generacji będzie mniejsza od najmniejszej z ww. pulsacji rezonansowych 0x01 graphic
Jeśli ta zależność nie będzie spełniona, to odpowiedni obwód będzie miał charakter pojemnościowy i warunek fazy nie będzie spełniony. Z tego powodu generatory Hartleya nie są stosowane w zakresie wyższych częstotliwości. Dla generatora Meissnera (rys. 8.10 z domyślnie podłączoną rezystancją obciążenia do obwodu rezonansowego) przy założeniu, że dobroć obwodu rezonansowego jest bardzo duża, warunek amplitudy przyjmuje postać 0x01 graphic
Przejdźmy do określenia wpływu stratności elementów reaktancyjnych i rezystancji obciążenia na właściwości generatora. Dla każdego obwodu rezonansowego w rezonansie musi występować równowaga mocy biernych, tzn. energia pola magnetycznego cewki musi być równa energii pola elektrycznego kondensatora. Każde naruszenie bilansu mocy biernych w obwodzie musi pociągnąć za sobą zmianę częstotliwości, aby przywrócić ich równowagę. Dla rozpatrzenia tego zagadnienia przeanalizujemy obwody rezonansowe z poniższego rysunku.8.13 Zauważmy najpierw, że obciążenie idealnego obwodu z (rys 8.13a) konduktancja Go nie narusza równowagi mocy biernych, ponieważ dla stałej wartości napięcia na obwodzie, zarówno energia pola magnetycznego cewki, jak i energia pola elektrycznego kondensatora pozostają bez zmian. Inaczej jest, jeśli w obwodzie uwzględnimy rezystancje strat cewki i kondensatora jak na rys 8.13b. Niezerowa wartość rL powoduje zmniejszenie prądu iL, tzn. zmniejszenie mocy biernej zmagazynowanej w polu magnetycznym cewki. Dla przywrócenia równowagi (rezonans) częstotliwość drgań musi zatem zmaleć, by spowodować wzrost iL. Przeciwnie, przy niezerowej wartości rC, maleje moc bierna magazynowana w polu elektrycznym kondensatora i dla przywrócenia równowagi częstotliwość drgań musi wzrosnąć. Odwrotna sytuacja zachodzi dla szeregowego obwodu rezonansowego ze stratami, gdzie wzrost strat cewki powoduje wzrost częstotliwości rezonansowej, a wzrost strat kondensatora powoduje jego spadek. Wartość dobroci cewki lub kondensatora0x01 graphic
0x01 graphic
Wpływa na równowagę mocy dwojako: określa stosunek mocy biernej do czynnej(strat) w danym elemencie, tzn. decyduje, w jakim stopniu zostaje naruszony warunek równowagi mocy biernych, o ile musi się zmienić częstotliwość, aby stan równowagi został przywrócony. Ta zmiana częstotliwości, spowodowana przez elementy liniowe, nosi nazwę liniowej poprawki częstotliwości. Uwzględniając ją, można określić pulsację drgań generatora ωg, która może się różnić od pulsacji rezonansowej ωr Określonej wzorem Thomsona 0x01 graphic
Wyprowadzanego przy założeniu, że ogólne straty obwodu są pomijalne. Dla generatora Colpittsa pulsacja drgań generatora jest określone zależnością: 0x01 graphic
Wyrażenie w nawiasie określa wartość liniowej poprawki częstotliwości (rL jest rezystancją strat cewki a RL uogólniona rezystancją obciążenia obwodu rezonansowego). Na uwagę zasługuje przeciwny charakter wpływu zmian rezystancji strat cewki i rezystancji obciążenie na wartość liniowej poprawki częstotliwości. Liniowa poprawka częstotliwości występuje także w innych generatorach. W generatorze Hartleya wartość liniowej poprawki częstotliwości może być dodatnia lub ujemna zależnie od tego, która z cewek ma większe straty. Dla zapewnienia odpowiedniej stałości częstotliwości wszystkich generatorów konieczne jest więc zapewnienie stałej wartości rezystancji obciążenia i stałej wartości strat elementów reaktancyjnych. Jeśli zapewnienie stałości obciążenia jest niemożliwe, to obciążenie należy odseparować od obwodu generatora stopniem separującym np. wtórnikiem emiterowym. Ponieważ przy zmianach temperatury pracy generatora mogą ulegać zmianie stratności elementów reaktancyjnych (choćby cewek), dlatego wysokostabilne generatory umieszcza się w termostacie.

0x08 graphic
Quasi-liniowa i nieliniowa teoria generacji Po włączeniu napięcia zasilającego w generatorze, w którym są spełnione określone wcześniej warunki amplitudy i fazy, nastąpi proces narastania drgań. W miarę wzrostu amplitudy drgań zaczynają odgrywać rolę własności nieliniowe elementu aktywnego, prowadzące do ograniczenia amplitudy (trzeci etap, rysunek 8.1) i powstania harmonicznych. Jeśli jednak przyjmiemy, że elementy obwodu rezonansowego mają dużą dobroć, to równowaga energetyczna w układzie będzie zależna wyłącznie od bilansu mocy składowej podstawowej. To założenie pomijalności składowych harmonicznych leży i podstaw teorii quasi-liniowej.[4] Do dalszej analizy przyjmiemy generator Meissnera zbudowany na bazie tranzystora polowego i przedstawiony na rysunku 8.14 Mechanizm wyrównywania strat w obwodzie wejściowym tranzystora polega na tym, że suma napięć w obwodzie bramki musi być równa sile elektromotorycznej indukowanej przez składową zmienną prądu drenu dzięki istnieniu indukcyjności wzajemnej M, co (dla ib=0) można zapisać jako 0x01 graphic
Ze względu na ogólnie nieliniowy charakter tego równania nie można wyznaczyć dokładnego rozwiązania. Ograniczając jednak nasze rozważania do generatorów z obwodami o dużej dobroci, można założyć, że w stanie ustalonym napięcie Ub(t) będzie przebiegiem harmonicznym Ub(t) = Ubcosωt Id(t)≈ub(t) Gdzie gmin jest uśrednionym nachyleniem charakterystyki tranzystora w przedziale międzyszczytowej wartości amplitudy ub(t). Po zróżniczkowaniu tych wyrażeń otrzymujemy 0x01 graphic
0x01 graphic
0x01 graphic
Po podstawieniu powyższych wyrażeń do 8.33 i uporządkowaniu otrzymujemy 0x01 graphic
Do spełnienia tego równania niezbędne jest spełnienie następujących warunków 0x01 graphic
0x01 graphic
Z warunku 8.40 otrzymujemy 0x01 graphic
Co oznacza, że jeśli pominiemy wpływ harmonicznych na bilans energetyczny, wówczas generator będzie generował jedynie sygnał o pulsacji rezonansowej obwodu. Gdyby uwzględnić harmoniczne, to do wyznaczenia częstotliwości drgań generatora w stanie ustalonym należałoby wprowadzić tzw. Nieliniowa poprawkę częstotliwości.Z warunku 8.41 otrzymujemy: 0x01 graphic
Oznacza to, że przy stałej wartości r, C, M stan ustalony wystąpi dla określonego gmśr. Z wcześniejszego ustalenia wynika, że gmśr jest funkcją napięcia Ub więc stan ustalony wystąpi dla określonej wartości Ub. Ponieważ napięcie wyjściowe generatora 0x01 graphic
Więc transmitancja toru wzmacniającego 0x01 graphic
Jest funkcją napięcia na bramce

a)0x08 graphic
0x08 graphic
8.15 charakterystyki toru wzmacniającego

Transmitancja toru sprzężenia zwrotnego 0x01 graphic
Mnożąc stronami wyrażenia 8.45 i 8.46 otrzymujemy warunek generacji dla stanu ustalonego postaci 0x01 graphic
Warunek też można sformułować następująco: jeśli w generatorze na etapie inicjalizacji drgań amplitudowy warunek generacji będzie spełniony z nadmiarem (Gβ>1), to narastanie drgań do stanu ustalonego będzie trwało tak długo, aż malejące wskutek wzrostu napięcia na bramce wzmocnienie dla składowej podstawowej (rys. 8.15) spełni warunek 0x01 graphic
Ilustrację graficzną tego warunku dla dwóch klas pracy elementu aktywnego przedstawiono na rysunku 8.16.0x08 graphic
0x08 graphic
8.16 charakterystyki generacyjne dla różnych klas pracy

Jeśli tor wzmacniający pracuje w klasie A (rys. 8.16 a), to warunek generacji dla stanu ustalonego nie jest spełniony dla transmitancji β2. Jeśli tor wzmacniający pracuje w klasie C (rys. 8.16b) to warunek generacji jest spełniony w dwóch punktach.

Korzystając z rysunku 8.17 przeanalizujemy, który z tych przypadków jest korzystniejszy z punktu widzenia odporności na zakłócenia stanu równowagi[4]

0x08 graphic
Rys8.17. Rodzaje punktów równowagi

Jeśli w układzie osiągnięty został punkt PA (rys. 8.17a) spełniający warunek generacji i wystąpi zakłócenie powodujące, że napięcie wyjściowe osiągnie chwilowo poziom 1, wówczas powstający sygnał zwrotny Uz1 spowoduje powstanie sygnału wejściowego o poziomie 1` jeszcze bardziej odbiegający od U20 (dla przejrzystości rysunku linie pionowe nieznacznie oddalono), co w konsekwencji prowadzi do samoczynnego, ciągłego wzrostu napięcia wyjściowego. Podobnie będzie, gdy chwilowe zakłócenie spowoduje przyjecie przez sygnał wyjściowy poziomu 2. Spowoduje to samoczynne, ciągłe spadanie napięcia wyjściowego aż do zaniku drgań. Punkt PA nazywamy punktem równowagi nietrwałej. Odwrotnie jest w sytuacji przedstawionej na rys 8.17b 0x08 graphic
tutaj bowiem zaburzenie do poziomu 1 spowoduje powstanie sygnału zwrotnego Uz1, któremu odpowiada poziom sygnału wyjściowego 1` zbliżony do U20. Punkt PB nazywamy punktem równowagi trwałej.

Przenosząc te rozważania na przypadek generatora z torem wzmacniającym pracującym w klasie A (rys. 8.16a), zauważamy że jeśli po włączeniu zasilania na wyjściu zostanie wytworzony dowolny sygnał (powstały chociażby w wyniku istnienia szumów własnych toru wzmacniającego), to spowoduje on, analogicznie jak dla punktu PA z rys. 8.17a, ciągłe narastanie sygnału, wyjściowego, aż do osiągnięcia punktu równowagi tożsamego z punktem PB z rys 8.17b. Generator z torem wzmacniającym pracującym w klasie A jest więc z generatorem samowzbudnym. Generator z torem wzmacniającym pracującym w klasie C jest natomiast generatorem obco wzbudzonym, gdyż dla zainicjowania drgań należy doprowadzić do jego wejścia sygnał o poziomie takim, aby powstał sygnał wyjściowy wyższy niż poziom U20 na rys. 8.17a.

0x08 graphic
Generator z torem wzmacniającym pracującym w klasie A pod względem możliwości wzbudzenia jest korzystniejszy od klasy C. Prześledźmy zjawiska fizyczne, jeśli w obwodzie wejściowym tranzystora (np. bipolarnego) będzie zastosowany dwójnik RECE (rys. 8.18)0x08 graphic

8.18 układ dynamicznej polaryzacji Załóżmy, że przed zamknięciem pętli sprzężenia zwrotnego punktu pracy P0 jest ustalony w klasie A i spełnione są warunki powstania drgań. Po wzbudzeniu drgań wzrostowi amplitudy sygnału generowanego towarzyszy odkształcenie przebiegu wyjściowego generatora i zmienia się jego wartość średnia, do której doładowuje się kondensator CE. W efekcie (przy stałym potencjale na bazie, wynikającym z układu polaryzacji) obniża się napięcie polaryzacji złącza baza-emiter i tor wzmacniający generatora przechodzi płynnie do klasy C. Dwójnik RECE tworzy tzw. Układ dynamicznej polaryzacji (automatycznego przedpięcia)

Podsumowując, jeśli tor wzmacniający generatora zostanie zaprojektowany do pracy w klasie A, to po spełnieniu warunku amplitudy i fazy będą samoczynnie zainicjowane drgania. W trakcie narastania drgań, dzięki zastosowaniu dynamicznej polaryzacji, tor wzmacniający w stanie ustalonym przejdzie do klasy w klasie C i uzyskuje się korzystniejsze parametry energetyczne generatora (większa sprawność przetwarzania energii zasilającej).

Przejdźmy do przeanalizowania etapu drugiego (rys. 8.1) tzn. etapu narastania drgań. W tym etapie pojawia się szereg zjawisk związanych z nieliniowością elementu aktywnego i wyznaczenie przebiegu sygnału wyjściowego jest problemem bardzo złożonym. Rozważania przytoczone dalej należy traktować jako przybliżone, o charakterze orientacyjnym. Tę pobieżną analizę przeprowadzimy dla generatora Meissnera (rys 8.14)

Jeśli przyjąć, że charakterystyka tranzystora jest opisana wielomianem potęgowym

0x01 graphic

To równanie (8.33) można zapisać w postaci równania Van der Pola w formie unormowanej [4]

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

Jest to równanie nieliniowe drugiego rzędu, którego ogólna metoda rozwiązywania jest nieznana i należy szukać rozwiązań przybliżonych. Jeśli przyjmiemy założenie, że dobroć obwodu rezonansowego jest dostatecznie duża, to naturalną postacią rozwiązania jest przebieg o zmiennej amplitudzie i pulsacji 0x01 graphic

0x01 graphic

co pozwala wyznaczyć przebieg napięcia

0x01 graphic

Gdzie 0x01 graphic

Jest złożoną funkcją wielu parametrów, a Us(0) jest amplitudą sygnału w chwili początkowej. Przebieg zależności (8.50) przedstawiono na rys 8.19a

Amplituda drgań w stanie ustalonym nie zależy od warunków początkowych, gdyż zeruje się składnik 0x01 graphic
i wynosi

0x01 graphic

Amplituda ta zależy z kolei od sprzężenia między cewkami M, co obrazuje rys 8.19b. Dla silnego sprzężenia maksymalna wartość amplitudy wynosi

0x01 graphic

Z rysunku wynika, że stosowanie silnego sprzężenia nie jest celowe, gdyż amplituda sygnału wyjściowego przyjmuje duże wartości, niekorzystne z punktu widzenia powstawania harmonicznych.

Minimalna (graniczna) wartość sprzężenia

0x01 graphic

Jest określona parametrami tranzystora i elementów obwodu rezonansowego.

Z rysunku wynika, że generator Meissnera (można wykazać, że jest tak również w innych typach generatorów sprzężeniowych) jest wrażliwy na zmiany sprzężenia (tutaj M, ogólnie β) szczególnie w pobliżu wartości granicznej i niewielkie zmiany wartości sprzężenia spowodują duże fluktuacje amplitudy. Jest to okoliczność niekorzystna, bowiem dla słabych sprzężeń uzyskuje się sygnał najbardziej zbliżony do sinusoidalnego. Z tego względu w układach generatorów stosuje się dodatkowe elementy stabilizujące wartość sprzężenia ( na poziomie około 1,3 0x01 graphic
), takie jak termistory, dzielniki i mostki diodowe, waraktorowe itp.

Analiza nieliniowa pozwala także wyznaczyć czas narastania sygnału 0x01 graphic
jako czas, jaki upływa od wzbudzenia drgań generatora do uzyskania amplitudy 0,9Us(∞), co zilustrowano na rys 8.19c. Czas ten jest tym krótszy, im większa jest amplituda w chwili początkowej. Dla generatora obcowzbudnego oznacza to, że tym szybciej osiągnięty zostanie stan ustalony, im silniejsze będzie pobudzenie.

Korzystając z równania Ban der Pola, można także określić wpływ harmonicznych. Nie wdając się w szczególne rozważania, można stwierdzić, że powstawaniu harmonicznych towarzyszy zmiana częstotliwości składowej podstawowej i przy wyznaczaniu jej wartości należy zastosować tzw. Nieliniowa poprawkę częstotliwości.

0x01 graphic

Dławik dla składowej stałej przedstawia małą rezystancję i unika się strat napięcia zasilającego kolektor. Kondensator blokujący Cb zabezpiecza przed zwarciem dla składowej stałej kolektora z bazą. Wartości Cb i CE dobiera się tak, aby dla częst. generacji ich reaktancje były pomijalne( zwarcie). Część napięcia zmiennego wydzielonego na obwodzie rezonansowym LC1C2 poprzez dzielnik reaktancyjny LC1 jest podawana w odpowiedniej fazie do bazy. Układ RECE stanowi układ dynamicznej polaryzacji. Dla Uniknięcia wpływu pojemności tranzystora na częstotliwość generacji należy stosować kondensatory w obwodzie rezonansowym o dostatecznie dużej pojemności. Konsekwencją tego jest jest konieczność stosowania cewki o niezbyt dużej indukcyjności. Wartość indukcyjności ma wpływ na dobroć obwodu rez. i stałość częst. generacji.

0x01 graphic

Dwa kondensatory blokujące: Cb1 zapobiegający zwarciu dla składowej stałej kolektora do masy przez cewkę L 2 i Cb2 zapobiegający z kolei zwarciu bazy do masy przez cewkę L1.

Generator Meissnera

0x01 graphic

Tor wzmacniający to konwencjonalny wzm. selektywny LC. Transformator zapewnia odpowiednie sprzężenie zwrotne i odwrócenie fazy. Kondensator blokujący Cb zapobiega zwarciu bazy do masy przez uzwojenie wtórne transformatora.

Generator Clappa

0x01 graphic

Jest zmodyfikowaną wersją gen. Colpittsa. Stosuje się go w celu uniknięcia niedogodności związanej z cewką o niezbyt dużej indukcyjności, która wpływa na dobroć stałość częstotliwości. Różnica polega na wprowadzeniu dodatkowego kondensatora C3. Generacja w tym układzie jest możliwa jedynie dla częst. większych niż częst. rezonansu szeregowego obwodu LC3, gdyż tylko w tym zakresie ten dwójnik ma charakter indukcyjny. Pojemność C3 dobiera się co najmniej kilkakrotnie mniejszą do pojemności C1 i C2. Wypadkowa pojemność całego obwodu jest wtedy zbliżona do C3, dzięki czemu można stosować cewkę L o większej indukcyjności, a wiec i większej dobroci. Kondensator C3 może być przestrajany, jednak będzie temu towarzyszyć zmiana amplitudy sygnału wyjściowego.

Generatory kwarcowe

0x08 graphic
0x01 graphic

Rezonator kwarcowy charakteryzuje się dwoma rezonansami: szeregowym (ωs) i równoległym (ωr). Na tych częst. rezonator przedstawia sobą charakter rzeczywisty, a poza nimi impedancyjny-pojemnościowy lub indukcyjny. Poza tymi drganiami podstawowymi mogąś wystąpić jeszcze drgania na częst. harmonicznych tzw. owertonach.

0x01 graphic

Górna gałąź tego schematu stanowi gałąź dynamiczna, a dolna statyczną( Co jest pojemnością oprawki)

Dobroć rezonatora kwarcowego określa zależność:

0x01 graphic

Pulsacje rezonansowe:

0x01 graphic
0x01 graphic

A ich względna różnica:

0x01 graphic

(Mała różnica, odstęp mniejszy niż 1/1000)

Wnioski wynikające z własności rezonatora kwarcowego:

  1. Rezonator kwarcowy można wykorzystać w układzie generatora jako element sprzężenia zwrotnego, który zapewni transmisje z wyjścia do wejścia toru wzmacniającego dla częst. rezonansu szeregowego w z zerowym przesunięciem fazowym.

  2. Rezonator kwarcowy można wykorzystać w generatorze jako element o charakterze indukcyjnym (ωs<ω<ωr)

Generator Butlera

Zaliczamy do nich generatory wykorzystujące rezonator kwarcowy jako element sprzęgający.

0x01 graphic

Sprzężenie zwrotne poprzez rezonator kwarcowy jest dodatnie, gdyż żaden ze stopni wzmacniających nie odwraca fazy( kaskada OB-OC). To sprzężenie spełnia warunki generacji dla częst. rezonansu szeregowego( mógłby do równoległego ale nie był by spełniony warunek amplitudowy). Kondensator Cz pozwala na nieznaczną korektę częst. generacji. Zalety: brak cewek opłaca się praktyce możliwością powstania dodatkowych drgań na niepożądanych częst.

0x01 graphic

Rys. Generator kwarcowy: Pierce'a

0x01 graphic

Rys. Generator kwarcowy: Colpittsa

0x01 graphic

Rys. Generator kwarcowy: Clappa

We wszystkich ww. układach rezonator kwarcowy rezonator kwarcowy jest włączony między kolektor a bazę. Różnica w poszczególnych rozwiązaniach polega na odmiennym sposobie włączenia tranzystora(uk. OE,OC,OB.) za pomocą kondensatorów Cb o względnie dużej pojemności.

Generatory RC są stosowane w zakresie częstotliwości powyżej setek kHz. Realizacja takich generatorów na zakres mniejszych częstotliwości jest niełatwa, gdyż wymagane duże wartości indukcyjności są trudne do zrealizowania. W zakresie częstotliwości poniżej setek kHz stosowane są generatory RC. Stałość częstotliwości takich generatorów jest jednak mniejsza od generatorów LC. Podobnie jak generatory LC i kwarcowe, także generatory RC są generatorami sprzężeniowymi. Najprostszą realizacją generatora RC jest układ z przesuwnikami fazy, przedstawionym na rysunku poniżej:

0x08 graphic
Nieparzysta liczba kaskady wzmacniaczy zapewnia odwrócenie fazy o π. Do spełnienia warunku fazy wystarczy, aby ogniwa RC dla pewnej częstotliwości zapewniły dodatkowe przesunięcie fazy o π. Każde pojedyncze ogniwo RC zapewnia przesunięcie fazy w funkcji częstotliwości z przedziału od 0 do π/2. Jeśli przyjąć że wszystkie ogniwa są identyczne, to wystarczy aby każde zapewniło przesunięcie fazy π/3. Wniosek: trzy jest minimalną liczbą ogniw w generatorze z ogniwami RC. Wymagane przesunięcie fazy wynosi π/3, więc z wyrażenia na charakterystykę fazową ogniwa 0x01 graphic
otrzymujemy 0x01 graphic
. Z charakterystyką fazową ogniwa RC jest ściśle związana charakterystyką amplitudową opisana zależnością:0x01 graphic
Przy realizacji przesunięcia fazy przez pojedyncze ogniwo RC o π/3 poziom sygnału na jego wyjściu zmaleje dwukrotnie. Przy trzech ogniwach wymagane jest, aby wzmocnienie toru wzmacniającego wynosiło 8, czyli każdy wzmacniacz pomijając wymagany na etapie początkowym nadmiar wzmocnienia, powinien zapewnić dwukrotne wzmocnienie.

0x08 graphic
Częściej stosowany jest generator z mostkiem Wiena. Schemat mostka Wiena przedstawia rysunek poniżej: Mostek Wiena składa się z dwóch gałęzi - selektywnej (lewa) i aperiodycznej (prawa). Transmitancja mostka jest opisana zależnością

0x01 graphic
dla pulsacji 0x01 graphic
transmitancja 0x01 graphic
osiąga wartość minimalną.

Do określenia stopnia równowagi mostka wprowadza się współczynnik 0x01 graphic
mostek jest w równowadze dla ε=0. Dla mostka zrównoważonego (ε=0) moduł transmitancji0x01 graphic
ale przesunięcie fazowe w otoczeniu pulsacji 0x01 graphic
zmienia się skokowo od -π/2 do π/2. Praca generatora z mostkiem Wiena dla ε=0 jest więc praktyczne niemożliwa i niecelowa. Przy odchodzeniu od warunku równowagi mostka (ε>0) wartość modułu transmitancji dla pulsacji 0x01 graphic
nieznacznie wzrasta, a przesunięcie fazowe zmienia się w przedziale 0x01 graphic
i dla 0x01 graphic
przyjmuje wartość 0. Charakterystyka fazowa dla 0x01 graphic
jest najbardziej stroma. Właśnie te cechy mostka wykorzystuje się do zbudowania generatora, którego schemat przedstawia rysunek poniżej.

0x08 graphic
Z amplitudowego warunku generacji można wyznaczyć wartość współczynnika niezrównoważenia 0x01 graphic
Stromość charakterystyki fazowej może być miarą pewnej zastępczej dobroci. Przyjmując określenie dobroci Q stosowane w obwodach rezonansowych LC, można określić zastępczą dobroć dla mostka Wiena. 0x01 graphic
która (co ciekawe) jest wielkością zależna od wzmocnienia. Zastosowanie mostka Wiena w generatorze przy ε<0 jest także możliwe, pod warunkiem zamiany zacisków wejściowych wzmacniacza operacyjnego.

Innym układem RC, który można wykorzystać do budowy generatora, jest filtr „podwójne T”, znany z zastosowań w tzw. Ampli filtrach i pokazany na rysunku poniżej.

0x01 graphic

Z charakterystyki tego filtru wynika, że dla częstotliwości quasi-rezonansowej filtru (0x01 graphic
przesunięcie fazy jest zależne od wartości n i może przyjąć wartość 0 lub π. Przypadek n=0,5 pomijamy, gdyż wymagana identyczności rezystorów i kondensatorów jest praktycznie niemożliwa do zrealizowania. Najprostszą realizacją generatora z filtrem „podwójne T” jest włączenie filtru zaprojektowanego dla n<0,5 w pętle ujemnego sprzężenia zwrotnego wzmacniacza operacyjnego, co przedstawiono na rysunku poniżej(a):

0x08 graphic
Sumaryczne przesunięcie fazy zapewnia spełnienie warunku fazowego generacji. Warunek amplitudy może być spełniony poprzez dobór wzmocnienia toru wzmacniającego. Możliwe jest, także stosowanie współczynnika n>0,5(rys.B), jednak konieczne jest wówczas wprowadzenie do układu dodatkowej pętli sprzężenia zwrotnego dodatniego. Pętla ta zapewni spełnienie warunku amplitudy w szerokim zakresie częstotliwości, ale warunek fazy będzie spełniony tylko dla częstotliwości 0x01 graphic
.

W każdym generatorze przy wzbudzaniu drgań warunek amplitudy powinien być spełniony z nadmiarem , a po osiągnięciu stanu ustalonego iloczyn 0x01 graphic
powinien być równy jedności. Spełnienie tego wymagania w generatorach RC było stosunkowo proste( stosowanie tzw. Układu dynamicznej polaryzacji) W generatorach RC staje się to problemem bardzo złożonym. Przykładowo w generatorze z mostkiem Wiena należy dobierać elementy rezystancyjne dzielnika napięcia R1 i R2 tak, aby dzielnik był układem liniowym, a jednocześnie stosunek ich podziału­ R­­1/(R1+R2) był zależny od amplitudy sygnału, czyli elementy R1 i R2 nie mogą być rezystorami. W związku z tym praktyczne układy generatorów RC są o wiele bardziej rozbudowane.

Szumy amplitudowe i fazowe generatorów

Dotychczas zakładaliśmy milcząco, że napięcia zasilające są idealnie stałe, a elementy składowe generatora wolne od szumów i fluktuacji parametrów. W rzeczywistych generatorach mamy do czynienia z fluktuacjami wszelkich prądów, a ich źródłem są nie tylko nieuniknione, przypadkowe wahania napięć zasilających, związane np. z wahaniami napięcia sieci energetycznej i zakłóceniami w niej, szumami własnymi stabilizatorów, ale także szumy cieplne, śrutowe, strukturalne itp. Innym źródłem fluktuacji w generatorach są przypadkowe zmiany np. pojemności tranzystorów.Dokładniejsza analiza pokazuje, że wpływy fluktuacji na pracę generatora mogą być trojakiego rodzaju:a)zakłócające stan równowagi energetycznej generatora(np. szumy cieplne, śrutowe itp.)b)zakłócające cechy transmisyjne obwodów rezonansowych(np. fluktuacje pojemności i indukcyjności)c)addytywne - sprowadzające się do dodawania szumu z obwodów pomocniczych generatora.

W rezultacie sygnał wyjściowy w każdym rzeczywistym generatorze sygnału sinusoidalnego ma postać: 0x01 graphic
gdzie a(t) nazywamy szumami amplitudowymi, a 0x01 graphic
szumami fazowymi, ponieważ ani amplituda, ani faza nie jest wielkością zdeterminowaną.

W dziedzinie częstotliwości szumy objawiają się rozmyciem widma sygnału wyjściowego generatora. Ze względu na jednoczesne występowanie obydwu rodzajów szumów widmo jest asymetryczne. Do oceny właściwości szumowych generatorów przyjęto współczynnik α(fm) definiowany jako: 0x01 graphic
Gdzie 0x01 graphic
jest jednowstęgową gęstością widmową mocy szumów, pomierzonych w odległości fm od nośnej, a PS całkowitą mocą generowanego sygnału. Jako szerokość pasma gsz(fm) przyjmuje się 1 Hz. Wartość α(fm) podaje się w [dB/Hz].

Re Zk=Rk

Im Zk=Xk

ωs

ωr

rk

Charakter pojemnościowy

Charakter indukcyjny

Charakter rezystancyjny

RkXk

ω

Rys. Ch-ka częstotliwościowa rezonatora kwarcowego



Wyszukiwarka

Podobne podstrony:
sprawozdania laborek (wszystkie 10)
Cw 10, Szkoła, Politechnika 1- 5 sem, politechnika, rok 1, 2 semestr, wszystko 2 sem
wszystko, 06 Załącz nr 10 program kursu
1-10-ŻYWIENIE- do wysłania, Zapotrzebowanie człowieka na energię jest wyznaczone poziomem przemiany
Temat 10, Wszystkie przydatne rzeczy na studia, Międzynarodowe stosunki polityczne
Rok 10 wszystkie kola z opracowaniem
Wykład 10, FIR UE Katowice, SEMESTR IV, Finanse przedsiębiorstw, fp, Finanse przedsiębiostwa - wszys
spr.10, studia, 3 rok, Mikrobiologia, pytania, testy, polski, STOMATOLOGIA 2005-2006 wszystkie
Wyklad z fizykoterapii 25.10, fizjoterapia materiały WSZYSTKO cz.2
Wszystkie pytania wrzesien 10, System Finansowy Gospodarki
sciaga egzamin III[1][1][1].1 by luke, aaa, studia 22.10.2014, całe sttudia, III semestr, teoria obw
R-10-07, ☆☆♠ Nauka dla Wszystkich Prawdziwych ∑ ξ ζ ω ∏ √¼½¾haslo nauka, linuks, programowanie w sys
IMiUE. 9.05.10, WSZYSTKO O ENERGII I ENERGETYCE, ENERGETYKA, KOPYDŁOWSKI
10 wszystkie rozwiązania
spis, aaa, studia 22.10.2014, całe sttudia, III semestr, teoria obwodów wyk, Wszystko, Nowy folder,
1-10-ZYWIENIE- do wyslania, Zapotrzebowanie człowieka na energię jest wyznaczone poziomem przemiany

więcej podobnych podstron