KNW PRJ ANG


I. Kripke

II. SOM

III. Linear regression.

1. Generate „measurement points” using the equation (emission rate α as a function of temperature T)

0x01 graphic
.

ν0=109 [s-1] is a preexponential factor, k = 8.6x10-5 [eV K-1] the Boltzmann constant, ΔE is an activation energy. Choose ΔE from the interval (100÷400) meV. Superimpose random noise (N/S = 0.1) on the y coordinate (emission rate). Generate about 10 points in the temperature range 100÷200 K.

2. Find the best fit parameters ν0 and ΔE, as well as their error estimates (uncertainties). Note that to use linear regression you have first to linearize the equation, i.e. to transform it in such a way that it becomes linear.

3. Because the task itself is rather trivial, your program should also contain the graphical interface, or at least you should include a few figures of the measurement points and the fitted line in the report (e.g with different noise to signal ratio or different number of points).



Wyszukiwarka

Podobne podstrony:
Hydrocephalus(ang)
Wstrzasy ang ppt
Glikoliza prezentacja (ang)
08 BIOCHEMIA mechanizmy adaptac mikroor ANG 2id 7389 ppt
3Kocioł ang
ns EiT 1 2st ang 2008
2010 ang
osteoarthritis ang ppt
j ang ark pdst
Matlab Programming (ang)
2010 próbny ang transkrypcja
cv po ang, Po I-III rok
ściąga z ang, Sql, Ściągi
FABP ang. fatty acids binding proteins
Colours&clothes-kl.4, Scenariusze lekcji j. ang SP
pol ang
ANG czasowniki nieregularne
slowka ang 2
Plan ramowy egz ang

więcej podobnych podstron