GEODEZJA
Ćwiczenie 4
Temat: Rachunek współrzędnych.
Radosław
Kwiatkowski
grupa 11B
2010/2011
Długość oraz azymut 12.
x1=7,23 y1=46,83
x2=52,11 y2=73,46
x12=44,88
y12=26,63
$d_{12} = \sqrt{{44,88}^{2} + {26,63}^{2}} = 52,19$
$\varphi = \operatorname{}{\frac{26,63}{44,88} = {34,0924}^{g}}$
A12 = 34, 0924g
x1=28,73 y1=31,12
x2=7,04 y2=45,21
x12=-21,69
y12=14,09
$d_{12} = \sqrt{{( - 21,69)}^{2} + {14,09}^{2}} = 25,86$
$\varphi = \operatorname{}{\frac{14,09}{- 21,69} = {- 36,6756}^{g}}$
A12 = φ + 200 = 163, 3243g
x1=37,25 y1=42,52
x2=7,24 y2=7,36
x12=-30,01
y12=-35,16
$d_{12} = \sqrt{{( - 30,01)}^{2} + {( - 35,16)}^{2}} = 46,23$
$\varphi = \operatorname{}{\frac{- 35,16}{- 30,01} = {55,0204}^{g}}$
A12 = φ + 200 = 255, 0204g
x1=26,18 y1=35,24
x2=76,52 y2=7,08
x12=50,34
y12=-28,16
$d_{12} = \sqrt{{50,34}^{2} + {( - 28,16)}^{2}} = 57,68$
$\varphi = \operatorname{}{\frac{- 28,16}{50,34} = {- 32,4694}^{g}}$
A12 = φ + 400 = 367, 5306g
Współrzędne pkt. 3
x1=38,25 y1=146,15
x2=85,11 y2=7,83
α = 39, 1275g
d13=34,75
x12=46,86
y12=-138,32
$\varphi = \operatorname{}{\frac{- 138,32}{46,86} = {- 79,2052}^{g}}$
A12 = φ + 400 = 320, 7948g
A13 = A12 − α = 281, 6673g
x3 = d12 • cosA13 + x1 = 28, 38
y3 = d12 • sinA13 + y1 = 112, 83
Współrzędne pkt. 3
x1=7,82 y1=7,13
x2=124,18 y2=163,58
α = 25, 3374g
β = 64, 5698g
x12=116,36
y12=156,45
$\varphi = \operatorname{}{\frac{112,36}{152,45} = {59,2888}^{g}}$
A12 = 59, 2888g
A13 = A12 − α = 33, 9514g
$d_{12} = \sqrt{{116,36}^{2} + {156,45}^{2}} = 194,98$
$d_{13} = \frac{d_{12} \bullet \sin\beta}{\sin{(\alpha + \beta)}} = \frac{194,98 \bullet \sin{64,5698}^{g}}{\sin{({25,3374}^{g} + {64,5698}^{g})}} = 167,65$
x31 = x1 + d13 • cosA13 = 7, 82 + 167, 65 • cos33, 9514g = 152, 19
y31 = y1 + d13 • sin=7, 13 + 167, 65 • sin=92, 36
A21 = A12 + 200 = 259, 2888g
A23 = A21 + β = 323, 8586g
$d_{23} = \frac{d_{12} \bullet \sin\alpha}{\sin{(\alpha + \beta)}} = \frac{194,98 \bullet \sin{25,3374}^{g}}{\sin{({25,3374}^{g} + {64,5698}^{g})}} = 76,53$
x32 = x2 + d23 • cosA23 = 124, 18 + 76, 53 • cos323, 8586g = 152, 19
y32 = y2 + d23 • sin=163, 58 + 76, 53 • sin=92, 36
$\mathbf{x}_{\mathbf{3}}\mathbf{=}\frac{\mathbf{x}_{\mathbf{3}}^{\mathbf{1}}\mathbf{+}\mathbf{x}_{\mathbf{3}}^{\mathbf{2}}}{\mathbf{2}}\mathbf{=}\mathbf{152,19}$
$\mathbf{y}_{\mathbf{3}}\mathbf{=}\frac{\mathbf{y}_{\mathbf{3}}^{\mathbf{1}}\mathbf{+}\mathbf{y}_{\mathbf{3}}^{\mathbf{2}}}{\mathbf{2}}\mathbf{=}\mathbf{92}\mathbf{,}\mathbf{36}$