Wydział Budownictwa Lądowego i Wodnego Politechniki Wrocławskiej
Wytrzymałość Materiałów 2
ĆWICZENIE PROJEKTOWE NR 1
TEMAT: 7/8
Zadanie 1 | Zadanie 2 | Zadanie 3 |
---|---|---|
Michał Kurzawa
Nr indeksu: 178332
Rok akademicki: 2010/2011
Kształtownik 1: C120 A=17 cm2 ez = 5,5-1,6=3,9 cm ey = 6 cm Iz = 364 cm4 Iy = 43,2 cm4 S = 5,5 cm Kształtownik 2: L200x100x10 A = 29,2 cm2 ez = 20-6,93 = 13,07 cm ey = 2,01 cm Iz = 210 cm4 Iy = 1219 cm4 Iyz = 289 cm4 |
Współrzędne środków ciężkości kształtowników w układzie początkowym y1, z1:
|
---|
Współrzędne środków ciężkości kształtowników w centralnym układzie y0, z0
y0C = y1C − yc = − 6 cm − (−0,937 cm) = − 5, 063 cm
z0C = z1C − zc = 3, 9 cm − 9, 6957 cm = − 5, 7957 cm
y0L = y1L − yc = 2, 01 cm − (−0,937 cm) = 2, 947 cm
z0L = z1L − zc = 13, 07 cm − 9, 6957 cm = 3, 3743 cm
Iy0 = 1219 cm4 + 29, 2cm2 * (3, 3743cm)2 + 43, 2 cm4 + 17 cm2 * (−5,7957cm)2 = 2165, 70 cm4
Iz0 = 210 cm4 + 29, 2cm2 * (2, 947cm)2 + 364 cm4 + 17 cm2 * (−5,063cm)2 = 1263, 374 cm4
Iy0z0 = 289 cm4 + 29, 2cm2 * (2,947 cm) * (3,3743 cm) + 0 + 17 cm2 * (−5,063cm) * ( − 5, 7957cm)=1078, 208 cm4
$$\tan\left( 2\varphi_{0} \right) = \ - \frac{2*I_{y0z0}}{I_{y0} - \ I_{z0}} = \ - \frac{2*1078,208\ \text{cm}^{4}}{2165,7\ \text{cm}^{4} - 1263,374\text{cm}^{4}} = \ - 2,389$$
$I_{1,2} = \ \frac{1}{2}\ \left( I_{y0} + \ I_{z0} \right)\ \pm \ \frac{1}{2}\ \sqrt{{(\ I_{y0} + \ I_{z0})}^{2} + 4*{I_{y0z0}}^{2}} = 1714,537\ \pm 1168,794$
|
---|
My0 max = − 22, 5qa2 α = |φ0| My = −My0 * cosα Mz = −My0 * sinα
$$\sigma = \frac{M_{y}*z}{I_{y}} - \frac{M_{z}*y}{I_{z}} = 0\ $$
$$z = \frac{M_{z}}{M_{y}}*\frac{I_{y}}{I_{z}}*y = \ \frac{{- M}_{y0}*\text{sinα}}{{- M}_{z0}*\text{cosα}}*\frac{I_{y}}{I_{z}}*y = \frac{\sin\left( 33,643 \right)}{\cos\left( 33,643 \right)}*\frac{2883,33}{545,743}*y = \mathbf{3,516}\mathbf{y}$$
y1 = 0 cm
z1 = 20 cm
y0 = y1 − yc = 0 − (−0,937cm) = 0, 937 cm
z0 = z1 − zc = 20 cm − 9, 6957 cm = 10, 3043 cm
y = y0cosφ0 + z0sinφ0 = 0, 937cm * cos(−33,643) + 10, 3043 * sin(−33,643) = −4, 929 cm
z = − y0sinφ0 + z0cosφ0 = −0, 937cm * sin(−33,643) + 10, 3043 * cos(−33,643) = 9, 0975 cm
$$\sigma_{x}^{1} = \frac{M_{y}*z}{I_{y}} - \frac{M_{z}*y}{I_{z}} = \ \frac{{- M}_{y0}*cos\alpha*z}{I_{y}} - \frac{{- M}_{y0}*sin\alpha*y}{I_{z}} = {- M}_{y0}*\left( \frac{cos\alpha*z}{I_{y}} - \frac{sin\alpha*y}{I_{z}} \right) = {- M}_{y0}*\left( \frac{\cos\left( 33,643 \right)*9,0975cm}{2883,331\ \text{cm}^{4}} - \frac{\sin\left( 33,643 \right)*\left( - 4,929\ cm \right)}{545,743\ \text{cm}^{4}} \right) = {- M}_{y0}*7,6304*10^{- 3}\ \frac{1}{\text{cm}^{3}} = \ {- M}_{y0}*7,6304*10^{3\ }\ \frac{1}{m^{3}}\ $$
y1 = 1 cm
z1 = 0 cm
y0 = y1 − yc = 1 − (−0,937cm) = 1, 937 cm
z0 = z1 − zc = 0 − 9, 6957 cm = −9, 6957 cm
y = y0cosφ0 + z0sinφ0 = 1, 937cm * cos(−33,643) + ( − 9, 6957cm)*sin(−33,643) = 6, 984 cm
z = − y0sinφ0 + z0cosφ0 = −1, 937cm * sin(−33,643) + (−9,6957cm) * cos(−33,643) = −6, 999 cm
$$\sigma_{x}^{2} = \frac{M_{y}*z}{I_{y}} - \frac{M_{z}*y}{I_{z}} = \ \frac{{- M}_{y0}*cos\alpha*z}{I_{y}} - \frac{{- M}_{y0}*sin\alpha*y}{I_{z}} = {- M}_{y0}*\left( \frac{cos\alpha*z}{I_{y}} - \frac{sin\alpha*y}{I_{z}} \right) = {- M}_{y0}*\left( \frac{\cos\left( 33,643 \right)*\left( - 6,999cm \right)}{2883,331\ \text{cm}^{4}} - \frac{\sin\left( 33,643 \right)*6,984\ cm}{545,743\ \text{cm}^{4}} \right) = {- M}_{y0}* - 9,1107*10^{- 3}\ \frac{1}{\text{cm}^{3}} = \ {- M}_{y0}* - 9,1107*10^{3\ }\ \frac{1}{m^{3}}$$
Największe naprężenia są w punkcie 2
|σx| ≤ Kg = 215 MPa
$$\sigma_{x}^{\max} = \ {- M}_{y0}* - 9,1107*10^{3\ }\frac{1}{m^{3}} = 204990,75*q\ \leq 215\ MPa\ $$
$$\mathbf{q}_{\mathbf{\text{dop}}} = \ \frac{215*10^{6}\frac{N}{m^{2}}}{204990,75\ \frac{1}{m}} = 1048,83\ \frac{N}{m} = \mathbf{1,0488\ }\frac{\mathbf{\text{kN}}}{\mathbf{m}}$$