cos2x = 1/2 + 1/2cos2x
sin2x = 1/2 − 1/2cos2x
cos(x±y) = cosxcosy ∓ sinxsiny
sin(x±y) = sinxcosy ± cosxsiny
sin2x = 2sinxcosx
cosxcosy = 1/2[cos(x−y)+cos(x+y)]
sinxsiny = 1/2[cos(x−y)−cos(x+y)]
ctgx = tg(π/2−x)
H[cosxt] = sinxt H[sinxt] = −cosxt
H[cos2x] = H[cosxcosx] = 1/2[H[cos(x−y)…
sinω0t zawsze Im cosω0t zawsze Re
j obrot o π/2 P reka − j obrot o π/2 L reka
$$sygnal\ analityczny\ y\left( t \right) = x\left( t \right) + j\hat{x}(t)$$
$$chwilowa\ czestosc\ \varphi = arctg\lbrack\hat{x}(t)/x(t)\rbrack$$
F[1/2] = 1/2 * 2πδ(ω)
F[cosω0t] = π[δ(ω−ω0) + δ(ω+ω0)]
F[sinω0t] = jπ[δ(ω−ω0)−δ(ω+ω0)]
AM (1+McosΩt)cosωnt
FM (1+McosΩt)[cos(ωn−Ω)t − cos(ωn+Ω)t]
cos2x = 1/2 + 1/2cos2x
sin2x = 1/2 − 1/2cos2x
cos(x±y) = cosxcosy ∓ sinxsiny
sin(x±y) = sinxcosy ± cosxsiny
sin2x = 2sinxcosx
cosxcosy = 1/2[cos(x−y)+cos(x+y)]
sinxsiny = 1/2[cos(x−y)−cos(x+y)]
ctgx = tg(π/2−x)
H[cosxt] = sinxt H[sinxt] = −cosxt
H[cos2x] = H[cosxcosx] = 1/2[H[cos(x−y)…
sinω0t zawsze Im cosω0t zawsze Re
j obrot o π/2 P reka − j obrot o π/2 L reka
$$sygnal\ analityczny\ y\left( t \right) = x\left( t \right) + j\hat{x}(t)$$
$$chwilowa\ czestosc\ \varphi = arctg\lbrack\hat{x}(t)/x(t)\rbrack$$
F[1/2] = 1/2 * 2πδ(ω)
F[cosω0t] = π[δ(ω−ω0) + δ(ω+ω0)]
F[sinω0t] = jπ[δ(ω−ω0)−δ(ω+ω0)]
AM (1+McosΩt)cosωnt
FM (1+McosΩt)[cos(ωn−Ω)t − cos(ωn+Ω)t]