Sciaga14 Obliczanie granic ciagow liczbowych[1]

Obliczanie granic ciągów liczbowych

Poniżej podamy sposób obliczania typowych granic ciągów liczbowych. Wszystkie rachunki wykonamy za pomocą kalkulatora ClassPad 300 Plus.

Przykład 1. Obliczyć granicę

Jest to granica z wielomianu; wyciągamy największą potęgę przed nawias:

Tak więc, wyrażenie w nawiasie dąży do 5, zaś wyrażenie przed nawiasem dąży do , czyli

Przykład 2. Obliczyć granicę

W przypadku ilorazu dwóch wielomianów, dzielimy licznik i mianownik przez najwyższą potęgę zmiennej z mianownika, czyli w tym przypadku przez :

Tak więc, wszystkie składniki licznika za wyjątkiem 2 i wszystkie składniki z mianownika za wyjątkiem 3 dążą do zera, czyli

Uwaga. Łatwo zauważyć, że jeżeli licznik i mianownik są wielomianami tego samego stopnia, to granica jest ilorazem współczynników przy najwyższych potęgach wielomianu z licznika i wielomianu z mianownika.

Przykład 3. Obliczyć granicę

W przypadku ilorazu dwóch wielomianów, dzielimy licznik i mianownik przez najwyższą potęgę zmiennej z mianownika, czyli w tym przypadku przez :

Tak więc, wszystkie składniki licznika i wszystkie składniki z mianownika za wyjątkiem 3 dążą do zera, czyli

Uwaga. Łatwo zauważyć, że jeżeli licznik jest wielomianem stopnia niższego niż mianownik, to granica jest zawsze równa zero.

Przykład 4. Obliczyć granicę

W przypadku ilorazu dwóch wielomianów, dzielimy licznik i mianownik przez najwyższą potęgę zmiennej z mianownika, czyli w tym przypadku przez :

Tak więc, licznik dąży do i wszystkie składniki z mianownika za wyjątkiem 3 dążą do zera, czyli

Uwaga. Łatwo zauważyć, że jeżeli licznik jest wielomianem stopnia wyższego niż mianownik, to granica jest zawsze równa ze znakiem plus lub minus, który zależy od znaku ilorazu współczynników przy najwyższych potęgach licznika i mianownika.

Przykład 5. Obliczyć granicę

Licznik i mianownik są funkcjami wykładniczymi, dzielimy każdy składnik przez :

Przykład 6. Obliczyć granicę

Korzystamy ze wzoru skróconego mnożenia: , zatem

Po skróceniu przez n dostajemy

czyli ostatecznie

Sprawdźmy:

Przykład 7. Obliczyć granicę przy x różnym od zera

Zauważmy, że

zatem

Ostatecznie


Wyszukiwarka

Podobne podstrony:
sciaga14 obliczanie granic ciagow liczbowych, Obliczanie granic ciągów liczbowych
sciaga14 obliczanie granic ciagow liczbowych, Obliczanie granic ciągów liczbowych
Obliczanie granic ciagow liczbowych
(2304) granice ciagow liczbowych, Analiza Matematyczna 2, Analiza Matematyczna 2
Twierdzenia przydatne do obliczania granic ciągów
Obliczyć granice ciągów
Obliczyć granice ciągów
6 Granica ciągu liczbowego Ciągi monotoniczne Zbieżność ciągów monotonicznych Liczba ex
AMI 07 Granice ciągów
granice ciagow odpowiedzi
Obliczanie granic stosując regułę de L, SZKOŁA, Matematyka, Matematyka

więcej podobnych podstron