project

Let’s consider the following circuit:

R = R1 = R2 = R3 = 25 Ω

C = 190 µF

L = 125 mH

E = 100 V

where switches S1 and S2 are closed at t = 0 and t = τ (where τ is the time constant of the LR circuit), according the following behavior:


$$\left\{ \begin{matrix} S1 = Off & S2 = O\text{ff} & dla\ t < 0 \\ S1 = On & S2 = Off & dla\ 0\ \leq t < \tau \\ S1 = On & S2 = On & dla\ t\ \geq \ \tau \\ \end{matrix} \right.\ $$

The goal is to find the solution of the above circuit, basically the current iL(t) through the inductor and the voltage v(t)C on the capacitor. Knowing v(t)C we can easily find the current i1(t). We will obtain the solution with 2 different methods:

Classic method

iL(t) = iC(t) = 0


$$\left\{ \begin{matrix} E - R_{3}i_{3} - L\frac{di_{1}}{dt} - R_{1}i_{1} = 0 \\ \text{\ \ \ i}_{2} = 0\ \ = = = > \ \ i_{1} = i_{2} = i_{L}\text{\ \ \ } \\ \end{matrix} \right.\ $$

We obtain a First Order Linear Differential equation with initial conditions:


$$\left\{ \begin{matrix} L\frac{di_{L}}{dt} + 2Ri_{L} = E \\ i_{L}\left( 0 \right) = 0 \\ \end{matrix} \right.\ $$

To find the solution, first we consider the associated homogenous equation and the characteristic equation:

$L\frac{di_{L}}{dt} + 2Ri_{L} = 0$ Lλ + 2R = 0 ∖ t $\lambda = - \frac{2R}{L}$

so


$$i_{L}\left( t \right) = Ce^{\text{λt}} = Ce^{- \frac{2R}{L}t}$$

To find a particular solution we assume that the derivative of the current iL is zero:

2RiL = E $i_{L} = \frac{E}{2R}$

So:


$$i_{L}\left( t \right) = \text{Ce}^{- \frac{2R}{L}t} + \frac{E}{2R}$$

To calculate the value of constant C, we use the initial condition:

$0 = C + \frac{E}{2R}$ $C = - \frac{E}{2R}$

Finally the solution of the differential equation is:

$i_{L}\left( t \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}t} \right)$ for 0 ≤ t ≤ τ

where τ is:


$$\tau = \left| \frac{1}{\lambda} \right| = \frac{L}{2R}$$

Replacing the values for R, L and E we have:

iL(t) = 2 (1−e−400t) for 0 ≤ t ≤ 2,5 msec


$$\left\{ \begin{matrix} E - R_{3}i_{3} - L\frac{di_{L}}{dt} - R_{1}i_{L} = 0 \\ R_{3}i_{3} - v_{C} - R_{2}C\frac{dv_{C}}{dt} = 0 \\ i_{L} = C\frac{dv_{C}}{dt} + i_{3} \\ \end{matrix} \right.\ $$

Considering the current iL(t), we obtain a Second Order Linear Differential equation


$$2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 5R^{2}C + L \right)\frac{di_{L}}{dt} + 2Ri_{L} = E$$

The initial conditions can be obtained by the solution:

$i_{L}\left( t \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}t} \right)$ dla 0 ≤ t ≤ τ

when t = τ. So we obtain:


$$i_{L}\left( \tau \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}\tau} \right) = \frac{E}{2R}\ \left( 1 - \frac{1}{e} \right) = 1,26\ A$$

and:


$$i_{L}^{'}\left( \tau \right) = \left. \ \frac{di_{L}(t)}{dt} \right|_{t = \tau}\ = \left. \ \frac{E}{L}\ \left( e^{- \frac{2R}{L}t} \right) \right|_{t = \tau} = \frac{E}{L}\ \frac{1}{e} = 295\ A/sec$$

Finally we obtain a Second Order Linear Differential equation with initial conditions


$$\left\{ \begin{matrix} 2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 3R^{2}C + L \right)\frac{di_{L}}{dt} + 2Ri_{L} = E \\ i_{L}\left( \tau \right) = \frac{E}{2R}\ \left( 1 - \frac{1}{e} \right)\text{\ \ \ \ } \\ i_{L}^{'}\left( \tau \right) = \frac{E}{L}\ \frac{1}{e} \\ \end{matrix} \right.\ $$

To find the solution, first we consider the associated homogenous equation and the characteristic equation:

$2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 5R^{2}C + L \right)\frac{di_{L}}{dt} + 2Ri_{L} = 0$ 2RLCλ2 + (5R2C+L)λ + 2R = 0

Substituting values for R, L and C we have:


1, 1875 * 10−3λ2 + 481, 25 * 10−3λ + 50 = 0

and solving the second order equation, we obtain two complex solutions:

λ1, 2 = α ± jβ = −202, 6 ± j32, 3

so:


iL(t) = eαt(c1cos(βt)+c2sin(βt)) = e−202, 6t(c1cos(32,3t)+c2sin(32,3t)) 

To find a particular solution we assume that the derivative of the current iL is zero:

2RiL = E $i_{L} = \frac{E}{2R}$

So:


$$i_{L}\left( t \right) = e^{- 202,6t}\left( c_{1}\cos\left( 32,3t \right) + c_{2}\sin\left( 32,3t \right) \right) + \frac{E}{2R}$$

To calculate the value of constant c1 and c2, we use the initial condition on iL(τ):

1,26 = e−202, 6 * 2, 5 * 10−3(c1cos(32,3*2,5*10−3)+c2sin(32,3*2,5*10−3)) + 2

-1,226 = c1cos(0,08075) + c2sin(0,08075)


0, 81565 * c1 + 0, 00115 * c2 = −1

and the initial condition on iL(τ):


295 = −202, 6 * e−202, 6 * 2, 5 * 10−3(c1cos(32,3*2,5*10−3)+c2sin(32,3*2,5*10−3)) + e−202, 6 * 2, 5 * 10−3(− 32, 3 * c1sin(32,3*2,5*10−3)+32, 3 * c2cos(32,3*2,5*10−3))


122, 2474 * c1 + 19, 6623 * c2 = 295

We obtain the following system of equations:

$\left\{ \begin{matrix} 0,81565*c_{1} + 0,00115*c_{2} = - 1 \\ 122,2474*c_{1} + 19,6623*c_{2} = 295 \\ \end{matrix} \right.\ $ $\left\{ \begin{matrix} c_{1} = - 1,19 \\ c_{2} = 22,429 \\ \end{matrix} \right.\ $

Finally the solution of the differential equation is:

$i_{L}\left( t \right) = e^{- 202,6t}\left( - 1.19*\cos\left( 32,3t \right) + 22,429*\sin\left( 32,3t \right) \right) + \frac{E}{2R}$ for t > 2,5 msec


Wyszukiwarka

Podobne podstrony:
Prezentacja ZPR MS Project
Free Energy Projects 2
Microsoft Office Project Project1 id 299062
89SXX Project Board
Classic Battletech Technical Readout Project Omega
30 LED Projects
Origami 30 fold by fold projects
projectpriorities
My Project Planner
engineering projects
80zadan, ZiIP, inne kierunki, politechnika, sem IV, MS Project
Project mannequin cz2
PROJECT rama żelbetowa 1
Dodatek A, ## Documents ##, MS Project 2000. Biblia
Abstract78 CDA Do No Harm Handbook, (Collaborative Learning Projects)
Project Management Six Sigma (Summary)
A picnic table is a project you?n buy all the material for and build in a?y
Appendix A Project Initiation Document Standard Template

więcej podobnych podstron