R=U/I
U=R*I
P=U*I
PE=E*I
Z=U/I
Z=R
Z=R+jX
Z=pierw(R^2+X^2)
Z=pierw(R^2+(wl)^2)
Z=pierw(R^2+(1/wc)^2)
I=U/Z
I=E/Z
I=E/R
IDC=Iśr=1/Tcałka0-Ti(t)dt=1/T
IAC=Isk=pierw(1/Tcałkat0-Ti^2(t)dt)
PR=R*I^2
Xc=1/wc=1/2PIfc
XL=Lw
Uc=-jXcI
UL=jXLI
UR=RI
Uv=XL*IA
P=W/t
Pw=pierw(3)Up*cos fi
Cosfi trojkat = pierw3/2
Cosfi gwiazda = 1
Up=pierw(3)Uv
IAPtrojkata=pierw(3)*(Uv/pierw(Zf)^2)
IAPlambda=pierw(3)/3*( Uv/pierw(Zf)^2)
S=3Uv*Ip
Ip=Uv*pierw(3)/Zf
EL=Li^2/2
Uc=1/cit+Ut0
EL=C*U^2/2
$R = \frac{U}{I}$ U = RI
P = UI PE = EI
$Z = \frac{U}{I}$ Z = R Z = R + jX
$Z = \sqrt{R^{2} + X^{2}}$ $Z = \sqrt{R^{2} + \left( l \right)^{2}}$
$$Z = \sqrt{R^{2} + \left( \frac{1}{\text{ωc}} \right)^{2}}$$
$I = \frac{U}{Z}$ $I = \frac{E}{Z}$ $I = \frac{E}{R}$
$$I_{\text{DC}} = I_{sr} = \frac{1}{T}\int_{0}^{T}{i\left( t \right)dt = \frac{1}{T}}$$
$$I_{\text{AC}} = I_{\text{sk}} = \sqrt{\frac{1}{T}\int_{0}^{T}{i^{2}\left( t \right)\text{dt}}}$$
PR = R * i2
$X_{C} = \frac{1}{\text{ωc}}$ XL = Lω
UC = −jXc * I UL = jXL * I
UR = RI UV = XL * IA
$P = \frac{W}{t}$ $P_{W} = \sqrt{3}*U_{P}*cos\varphi$
$\text{cosφ}_{\Delta} = \frac{\sqrt{3}}{2}$ cosφλ = 1
$$U_{P} = \sqrt{3}U_{V}$$
$I_{\text{AP}} = \sqrt{3}\frac{U_{V}}{\sqrt{{Z_{f}}^{2}}}$ $I_{\text{AP}} = \frac{\sqrt{3}}{3}\frac{U_{V}}{\sqrt{{Z_{f}}^{2}}}$
S = 3UV * IP
$$I_{P} = U_{V}*\frac{\sqrt{3}}{Z_{f}}$$
$$E_{L} = \frac{Li^{2}}{2}$$
$U_{C} = \frac{1}{\text{ci}\left( t \right) + U_{t0}}$ $E_{L} = \frac{C*U^{2}}{2}$