Rozciąganie i ściskanie prętów płaskich
$\frac{P}{A} = \sigma$ , $\ l = \frac{P \bullet l}{E \bullet A}$ , lc = l1 + l2 , d’ = d1(1- ϑ$\frac{l}{l}$ )
Ścinanie techniczne:
$\frac{T}{n \bullet i\ \bullet \frac{\pi d^{2}}{4}} \leq \text{kt}$ , $\frac{P}{\text{idt}} \leq Pdop,\ \ $ $\frac{P}{n \bullet d \bullet g_{1}} \leq \text{Pdop}$
$\sigma_{A - A} = \frac{P}{(b - d) \bullet g_{1}} \leq \text{kr}\ ,\ \ \ \ \ \ \ \ \ \ \ \ \frac{P}{g_{1 \bullet \text{kr}}} \leq b \bullet d\ ,\ \ \ \ \ \ \ \ \ \ b \geq \frac{P}{g1 \bullet \text{kr}} + d$
$\frac{P}{b \bullet w} \leq \text{kt} = > b \geq \frac{P}{w \bullet \text{kt}}$
Ms-9550$\frac{N}{n} = w\left\lbrack \text{Nm} \right\rbrack\ \ ,\ \ \ \ \ \ \ \ \frac{T}{b \bullet l} \leq \text{kt},\ \ \ \ \ \ \ \ \ \ \mathrm{\tau}\mathrm{=}\frac{F}{\sum a \bullet l}$
Skręcanie prętów prostych o przekroju kołowym:1)tuleja2)wał
$\mathbf{1)}\text{τmax} = \frac{\text{Ms}}{\text{Wo}}$ , $\text{Wo} = \frac{pd^{3}}{16}$
$I_{0} = \text{Ix} + \text{Iy} = \frac{\pi d^{4}}{32}\text{\ \ }\text{Io} = \frac{\pi d^{4}}{32} - \ \frac{\text{πd}w^{4}}{32} = \ \frac{\pi}{32}(\text{dz}w^{4} - dw^{4}$)
$\text{τw} = \frac{\text{Ms}}{\text{Io}}\ \bullet \frac{\text{dw}}{2}$ , $\varphi = \frac{\text{Ms} \bullet l}{G \bullet \text{Io}}\left\lbrack \text{rad} \right\rbrack\ \ ,\ \ \ \varphi^{o} = \frac{180}{\pi} \bullet \varphi$
2)$\ \varphi = \frac{\text{Ms} \bullet l}{G \bullet \text{Io}} \leq \varphi\text{dop}$, Ms-9550$\frac{N}{n} = w\left\lbrack \text{Nm} \right\rbrack,\ \ $Io=$\frac{\pi d^{4}}{32}$, $\varphi = \frac{\pi}{180} \bullet \varphi\ \lbrack rad\rbrack$, Wo=$\frac{\pi d^{3}}{16}$, $\text{τmax} = \frac{\text{Ms}}{\text{Wo}}$,
Zginianie prętów prostych:
$\frac{\begin{matrix} \\ \text{dMg}(x - \text{mysl},\text{przek}) \\ \end{matrix}}{\text{dx}1} = T\left( m.p \right) = 0,\ \ \ \ P - \text{qx}\left( \text{mp}* \right) = 0,\ \ \ \ \ \ x*\ = \ \frac{P}{q},\ Mg(x*)$
$\frac{\text{Mgmax}}{\text{Wy}} \leq kg$
$Wy = \frac{\text{Ix}}{\text{ymax}} = \frac{a^{3}}{6}$ , $\odot \text{Wg} = \frac{\pi d^{3}}{\begin{matrix} 32 \\ \\ \end{matrix}}\text{\ \ }$ , $\parallel Wg = \frac{2b^{3}}{3}$
1.A1=пr2/2, e=4r/3п, Iz1=пd4/128=п16r4/128=пr48, Iy1=0,11r4, A2=3r2, Iz2=bh3/12=3r*r3/12=r4/4, Iy2=r27r3/12=27r4/12, Z0=A1*e+A2(-1,5r)/A2+A1=[пr2/2*4r/3п-3r2*1,5r]/[ пr2/2+3r2]=[2/3r3-4,5r3]/[( п/2+3)r2]=-3,833/4,57r=-0,84, Izc=Iz1+IZ2=пr4/8+r4/4=2пr4/8, Iyc=IY1+A1*(e+Zo)2+Iyz+A2(1,5-Z0)2=0,11r4+пr2/2*(4r/3п-0,84)2+27/12r4+3r2(1,5r+0,84)2. 2. Jx=bh3/12, P1=5a*a=5a2 Jx1=5a*a3/12, Jx1=5a4/12, Jy1=a*5a3/12=125a4/12, P2=1/2*5a=2,5a2, Jx2=0,5a*5a3/12 = 0,5a*125a3/12=125a4/24, I0=Sx/A=[P1*5,5a+(P2*2,5a)*2] / [5a2+2,5a2*2]= [5a2*5,5a+(2,5a2*2,5a)*2]/[5a2+2,5a2*2]=[27,5a3+12,5a3]/[10a2]= 4a, Iy2=5a*(1/2a)3/12= 5a*a3/8*12=5a4/96, Iyc= Iy1+( Iy2+P2*(2,25a)2*2=125a4/12 + (5a4/96+2,5a2*5,0625a2)= 125a4/12 + 5a4/96 + 12, 656 a4=23,125a4 $l = \frac{P \bullet l}{E \bullet A}$ $\frac{T}{n \bullet i\ \bullet \frac{\pi d^{2}}{4}} \leq \text{kt}$ , $\frac{P}{\text{idt}} \leq \text{Pdop},\ \ $ $\frac{P}{n \bullet d \bullet g_{1}} \leq \text{Pdop}$, $\text{Wo} = \frac{pd^{3}}{16}$ $\text{Io} = \frac{\pi d^{4}}{32}$ $\varphi = \frac{\text{Ms} \bullet l}{G \bullet \text{Io}}$ $\text{Wg} = \frac{\pi d^{3}}{\begin{matrix} 32 \\ \\ \end{matrix}}\text{\ \ }$ , $\text{Wg} = \frac{2b^{3}}{3}$
1.A1=пr2/2, e=4r/3п, Iz1=пd4/128=п16r4/128=пr48, Iy1=0,11r4, A2=3r2, Iz2=bh3/12=3r*r3/12=r4/4, Iy2=r27r3/12=27r4/12, Z0=A1*e+A2(-1,5r)/A2+A1=[пr2/2*4r/3п-3r2*1,5r]/[ пr2/2+3r2]=[2/3r3-4,5r3]/[( п/2+3)r2]=-3,833/4,57r=-0,84, Izc=Iz1+IZ2=пr4/8+r4/4=2пr4/8, Iyc=IY1+A1*(e+Zo)2+Iyz+A2(1,5-Z0)2=0,11r4+пr2/2*(4r/3п-0,84)2+27/12r4+3r2(1,5r+0,84)2. 2. Jx=bh3/12, P1=5a*a=5a2 Jx1=5a*a3/12, Jx1=5a4/12, Jy1=a*5a3/12=125a4/12, P2=1/2*5a=2,5a2, Jx2=0,5a*5a3/12 = 0,5a*125a3/12=125a4/24, I0=Sx/A=[P1*5,5a+(P2*2,5a)*2] / [5a2+2,5a2*2]= [5a2*5,5a+(2,5a2*2,5a)*2]/[5a2+2,5a2*2]=[27,5a3+12,5a3]/[10a2]= 4a, Iy2=5a*(1/2a)3/12= 5a*a3/8*12=5a4/96, Iyc= Iy1+( Iy2+P2*(2,25a)2*2=125a4/12 + (5a4/96+2,5a2*5,0625a2)= 125a4/12 + 5a4/96 + 12, 656 a4=23,125a4 $l = \frac{P \bullet l}{E \bullet A}$ $\frac{T}{n \bullet i\ \bullet \frac{\pi d^{2}}{4}} \leq \text{kt}$ , $\frac{P}{\text{idt}} \leq \text{Pdop},\ \ $ $\frac{P}{n \bullet d \bullet g_{1}} \leq \text{Pdop}$, $\text{Wo} = \frac{pd^{3}}{16}$ $\text{Io} = \frac{\pi d^{4}}{32}$ $\varphi = \frac{\text{Ms} \bullet l}{G \bullet \text{Io}}$ $\text{Wg} = \frac{\pi d^{3}}{\begin{matrix} 32 \\ \\ \end{matrix}}\text{\ \ }$ , $\text{Wg} = \frac{2b^{3}}{3}$
1.A1=пr2/2, e=4r/3п, Iz1=пd4/128=п16r4/128=пr48, Iy1=0,11r4, A2=3r2, Iz2=bh3/12=3r*r3/12=r4/4, Iy2=r27r3/12=27r4/12, Z0=A1*e+A2(-1,5r)/A2+A1=[пr2/2*4r/3п-3r2*1,5r]/[ пr2/2+3r2]=[2/3r3-4,5r3]/[( п/2+3)r2]=-3,833/4,57r=-0,84, Izc=Iz1+IZ2=пr4/8+r4/4=2пr4/8, Iyc=IY1+A1*(e+Zo)2+Iyz+A2(1,5-Z0)2=0,11r4+пr2/2*(4r/3п-0,84)2+27/12r4+3r2(1,5r+0,84)2. 2. Jx=bh3/12, P1=5a*a=5a2 Jx1=5a*a3/12, Jx1=5a4/12, Jy1=a*5a3/12=125a4/12, P2=1/2*5a=2,5a2, Jx2=0,5a*5a3/12 = 0,5a*125a3/12=125a4/24, I0=Sx/A=[P1*5,5a+(P2*2,5a)*2] / [5a2+2,5a2*2]= [5a2*5,5a+(2,5a2*2,5a)*2]/[5a2+2,5a2*2]=[27,5a3+12,5a3]/[10a2]= 4a, Iy2=5a*(1/2a)3/12= 5a*a3/8*12=5a4/96, Iyc= Iy1+( Iy2+P2*(2,25a)2*2=125a4/12 + (5a4/96+2,5a2*5,0625a2)= 125a4/12 + 5a4/96 + 12, 656 a4=23,125a4 $l = \frac{P \bullet l}{E \bullet A}$ $\frac{T}{n \bullet i\ \bullet \frac{\pi d^{2}}{4}} \leq \text{kt}$ , $\frac{P}{\text{idt}} \leq \text{Pdop},\ \ $ $\frac{P}{n \bullet d \bullet g_{1}} \leq \text{Pdop}$, $\text{Wo} = \frac{pd^{3}}{16}$ $\text{Io} = \frac{\pi d^{4}}{32}$ $\varphi = \frac{\text{Ms} \bullet l}{G \bullet \text{Io}}$ $\text{Wg} = \frac{\pi d^{3}}{\begin{matrix} 32 \\ \\ \end{matrix}}\text{\ \ }$ , $\text{Wg} = \frac{2b^{3}}{3}$