ZRYWANIE WŁÓKIEN W PĘCZKACH
Wyniki pomiarów masy pęczków i odpowiadających im sił zrywających:
Lp. pomiaru i | Wartość pomiarów | mi-mśr | Fpi- Fpśr | (mi- mśr)(Fpi- Fpśr) | (xi- mśr)2 | (Fpi- Fpśr)2 |
---|---|---|---|---|---|---|
Masa [mg] mi | Siła zrywająca [G] Fpi | |||||
1 | 2.8 | 1220 | -0.025 | -252 | 6.3 | 0.000625 |
2 | 2.4 | 1510 | -0.425 | 38 | -16.15 | 0.180625 |
3 | 2.5 | 1110 | -0.325 | -362 | 117.65 | 0.105625 |
4 | 2.7 | 1320 | -0.125 | -152 | 19 | 0.015625 |
5 | 2.7 | 1900 | -0.125 | 428 | -53.5 | 0.015625 |
6 | 2.9 | 1700 | 0.075 | 228 | 17.1 | 0.005625 |
7 | 3.3 | 1620 | 0.475 | 148 | 70.3 | 0.225625 |
8 | 2.65 | 1500 | -0.175 | 28 | -4.9 | 0.030625 |
9 | 2.8 | 1500 | -0.025 | 28 | -0.7 | 0.000625 |
10 | 2.7 | 1090 | -0.125 | -382 | 47.75 | 0.015625 |
11 | 3 | 1420 | 0.175 | -52 | -9.1 | 0.030625 |
12 | 2.9 | 1360 | 0.075 | -112 | -8.4 | 0.005625 |
13 | 3 | 1420 | 0.175 | -52 | -9.1 | 0.030625 |
14 | 3 | 1420 | 0.175 | -52 | -9.1 | 0.030625 |
15 | 3.3 | 1630 | 0.475 | 158 | 75.05 | 0.225625 |
16 | 2.5 | 1320 | -0.4 | -152 | 60.8 | 0.16 |
17 | 3.2 | 1720 | 0.375 | 248 | 93 | 0.140625 |
18 | 3.15 | 1760 | 0.325 | 288 | 93.6 | 0.105625 |
19 | 2.5 | 1480 | -0.325 | 8 | -2.6 | 0.105625 |
20 | 2.5 | 1440 | -0.325 | -32 | 10.4 | 0.105625 |
suma | 56.5 | 29440 | 497.4 | 1.536875 | ||
średnia | mśr =2.825 | Fpśr =1472 |
$$S_{m} = \sqrt{\frac{1}{n - 1}\sum_{i = 1}^{n}\left( m_{i} - m_{sr} \right)^{2}}$$
$$S_{m} = \sqrt{\frac{1}{19} \bullet 1.537} = \sqrt{0.0526 \bullet 1.537} = \sqrt{0.08089} = 0.2844 \approx 0.28\lbrack mg\rbrack$$
$$S_{\text{Fp}} = \sqrt{\frac{1}{n - 1}\sum_{i = 1}^{n}\left( \text{Fp}_{i} - \text{Fp}_{sr} \right)^{2}}$$
$$S_{m} = \sqrt{\frac{1}{19} \bullet 774476} = \sqrt{0.0526 \bullet 774476} = \sqrt{40737.43} = 201.835 \approx 201.84\lbrack G\rbrack$$
Masa liniowa włókien:
$$\text{Tt}_{p} = \frac{m\left\lbrack \text{mg} \right\rbrack}{l\left\lbrack \text{mm} \right\rbrack} \bullet 1000 = \frac{0.43\left\lbrack \text{mg} \right\rbrack}{25\left\lbrack \text{mm} \right\rbrack} \bullet 1000 = 17.2\ \left\lbrack \text{tex} \right\rbrack$$
Współczynnik korelacji liniowej pomiędzy grubością pęczków wyrażaną w texach a siłą zrywającą rFm
$$r_{\text{Fm}} = \frac{1}{n \bullet s_{m}{\bullet s}_{\text{Fp}}}\sum_{i = 1}^{n}{\left( m_{i} - m_{sr} \right)(\text{Fp}_{i}} - \text{Fp}_{sr})$$
$$r_{\text{Fm}} = \frac{1}{20 \bullet 0.28 \bullet 201.84} \bullet 497.4 = 0.000884718 \bullet 497.4 = 0.440058604 = 0.44$$
Średnia wytrzymałość właściwa włókien wyrażana w Gramach na tex Wtp
$$\text{Wt}_{p} = \frac{F_{p}}{\text{Tt}_{p}}\left\lbrack 1 + \left( \frac{s_{m}}{m} \right)^{2} - r_{\text{Fm}}\frac{s_{m}s_{\text{Fp}}}{{m_{sr}\text{Fp}}_{sr}} \right\rbrack\left\lbrack \frac{G}{\text{tex}} \right\rbrack$$
$$\text{Wt}_{p} = \frac{1472\ \lbrack G\rbrack}{17.2\ \lbrack tex\rbrack}\left\lbrack 1 + \left( \frac{0.28}{2.825} \right)^{2} - 0.44\frac{0.28 \bullet 201.84}{2.825 \bullet 1472} \right\rbrack = 85.581\left\lbrack 1 + 0.00982 - 0.005632 \right\rbrack = 85.939 \approx 85.94\left\lbrack \frac{G}{\text{tex}} \right\rbrack$$
Odchylenie standardowe wytrzymałości właściwej włókien wyrażonej w Gramach na tex sWt
$$S_{\text{Wt}} = \sqrt{\left( \frac{{F_{p}}_{sr}}{\text{Tt}_{p}} \right)\left\lbrack \left( \frac{s_{\text{Fp}}}{{F_{p}}_{sr}} \right)^{2} + \left( \frac{s_{m}}{m_{sr}} \right)^{2} - r_{\text{Fm}}\frac{s_{m}s_{\text{Fp}}}{m_{sr}{F_{p}}_{sr}} \right\rbrack}\left\lbrack \ \frac{G}{\text{tex}} \right\rbrack$$
$$S_{\text{Wt}} = \sqrt{\left( \frac{1472}{17.2} \right)\left\lbrack \left( \frac{201.84}{1472} \right)^{2} + \left( \frac{0.28}{2.825} \right)^{2} - 0.44\frac{0.28 \bullet 201.84}{2.825 \bullet 1472} \right\rbrack} = \sqrt{85.581\left\lbrack 0.13712 + 0.00982 - 0.005632 \right\rbrack} = 3.478 \approx 3.48\left\lbrack \ \frac{G}{\text{tex}} \right\rbrack$$
Współczynnik zmienności wytrzymałości właściwej włókien Vp
$$V_{p} = \frac{S_{\text{Wt}}}{\text{Wt}_{p}}\ \lbrack\%\rbrack$$
$$V_{p} = \frac{3.48}{85.94} = 0.040 \approx 0.04\ \lbrack\%\rbrack$$
Przybliżona wartość wytrzymałości właściwej włókien wyrażona w Gramach na tex Wt’p
$${Wt'}_{p} = \frac{\text{Fp}_{sr}}{\text{Tt}_{p}}\left\lbrack \frac{G}{\text{tex}} \right\rbrack$$
$${Wt'}_{p} = \frac{1472}{17.2} = 85.581 \approx 85.58\left\lbrack \frac{G}{\text{tex}} \right\rbrack$$