∫0dx = C
∫1dx = x + C
$$\int_{}^{}{x^{k}\mathrm{d}x} = \frac{x^{k + 1}}{k + 1} + \mathrm{C}$$
$$\int_{}^{}{\frac{1}{x}\mathrm{d}x} = \ln\left| x \right| + \mathrm{C}$$
$$\int_{}^{}{a^{x}\mathrm{d}x} = \frac{a^{x}}{\ln a} + \mathrm{C}$$
∫exdx = ex + C
∫sinxdx = −cosx + C
∫cosxdx = sinx + C
$$\int_{}^{}{\frac{1}{\operatorname{}x}\mathrm{d}x} = \tan x + \mathrm{C}$$
$$\int_{}^{}{\frac{1}{\operatorname{}x}\mathrm{d}x} = - \cot x + \mathrm{C}$$
$$\int_{}^{}{\frac{1}{1 + x^{2}}\mathrm{d}x} = \operatorname{}x + \mathrm{C} = - \operatorname{}x + \mathrm{C}$$
$$\int_{}^{}{\frac{1}{\sqrt{1 - x^{2}}}\mathrm{d}x} = \operatorname{}x + \mathrm{C} = - \operatorname{}x + \mathrm{C}$$
F(x) |
F′(x) |
---|---|
C |
0 |
$$\sqrt{x}$$ |
$$\frac{1}{2\sqrt{x}}$$ |
xk |
kxk − 1 |
sinx |
cosx |
cosx |
−sinx |
tanx |
$$\frac{1}{\operatorname{}x}$$ |
cotx |
$$- \frac{1}{\operatorname{}x}$$ |
ex |
ex |
ax |
axlna |
lnx |
$$\frac{1}{x}$$ |
x |
$$\frac{1}{x\ln a}$$ |
x |
$$\frac{1}{\sqrt{1 - x^{2}}}$$ |
x |
$$- \frac{1}{\sqrt{1 - x^{2}}}$$ |
x |
$$\frac{1}{1 + x^{2}}$$ |
x |
$$- \frac{1}{1 + x^{2}}$$ |
[f(x)]k |
k[f(x)]k − 1f′(x) |
ef(x) |
ef(x)f′(x) |
af(x) |
af(x)lnaf′(x) |
lnf(x) |
$$\frac{f^{'}(x)}{f(x)}$$ |
f(x) |
$$\frac{f^{'}(x)}{f(x)\ln a}$$ |