Całki, pochodne


0dx = C


1dx = x + C


$$\int_{}^{}{x^{k}\mathrm{d}x} = \frac{x^{k + 1}}{k + 1} + \mathrm{C}$$


$$\int_{}^{}{\frac{1}{x}\mathrm{d}x} = \ln\left| x \right| + \mathrm{C}$$


$$\int_{}^{}{a^{x}\mathrm{d}x} = \frac{a^{x}}{\ln a} + \mathrm{C}$$


exdx = ex + C


sinxdx = −cosx + C


cosxdx = sinx + C


$$\int_{}^{}{\frac{1}{\operatorname{}x}\mathrm{d}x} = \tan x + \mathrm{C}$$


$$\int_{}^{}{\frac{1}{\operatorname{}x}\mathrm{d}x} = - \cot x + \mathrm{C}$$


$$\int_{}^{}{\frac{1}{1 + x^{2}}\mathrm{d}x} = \operatorname{}x + \mathrm{C} = - \operatorname{}x + \mathrm{C}$$


$$\int_{}^{}{\frac{1}{\sqrt{1 - x^{2}}}\mathrm{d}x} = \operatorname{}x + \mathrm{C} = - \operatorname{}x + \mathrm{C}$$


F(x)

F(x)

C

0

$$\sqrt{x}$$

$$\frac{1}{2\sqrt{x}}$$

xk

kxk − 1

sinx

cosx

cosx

−sinx

tanx

$$\frac{1}{\operatorname{}x}$$

cotx

$$- \frac{1}{\operatorname{}x}$$

ex

ex

ax

axlna

lnx

$$\frac{1}{x}$$

x

$$\frac{1}{x\ln a}$$

x

$$\frac{1}{\sqrt{1 - x^{2}}}$$

x

$$- \frac{1}{\sqrt{1 - x^{2}}}$$

x

$$\frac{1}{1 + x^{2}}$$

x

$$- \frac{1}{1 + x^{2}}$$

[f(x)]k

k[f(x)]k − 1f(x)

ef(x)

ef(x)f(x)

af(x)

af(x)lnaf(x)

lnf(x)

$$\frac{f^{'}(x)}{f(x)}$$

f(x)

$$\frac{f^{'}(x)}{f(x)\ln a}$$

Wyszukiwarka

Podobne podstrony:
całki pochodne itd
wzory na całki i pochodne, Budownictwo UTP - Isem
Całki, pochodne
CAŁKI & POCHODNE, Matematyka
Całki pochodne szeregi
wzory na całki i pochodne
pochodne i całki
6 - spr pochodne i calki (2) dla ZSZ-PF34 - pl 4[1], Pomoce naukowe SGSP, Moje Dokumenty, Matematyka
Pochodne, całki
Pochodne i całki wzory
calki na pochodne
Matematyka Pochodne funkcji Calki ZAD 4
Pochodne Całki
zestaw 2 pochodne, całki
granice, ciagi, pochodzne, calki
Matematyka Pochodne funkcji Calki ZAD 5
Matematyka Pochodne funkcji Calki ZAD 2
Matematyka - pochodne + całki + liczby zespolone, STUDIA

więcej podobnych podstron