energoelektronika

Tranzystor polowy, tranzystor unipolarny, FET (ang. Field Effect Transistor) – tranzystor, w którym sterowanie prądem odbywa się za pomocą pola elektrycznego.

Zasadniczą częścią tranzystora polowego jest kryształ odpowiednio domieszkowanego półprzewodnika z dwiema elektrodami: źródłem (symbol S od ang. source, odpowiednik emitera w tranzystorze bipolarnym) i drenem (D, drain, odpowiednik kolektora). Pomiędzy nimi tworzy się tzw. kanał, którym płynie prąd. Wzdłuż kanału umieszczona jest trzecia elektroda, zwana bramką (G, gate, odpowiednik bazy).

Tranzystory polowe z izolowaną bramką - w tranzystorach tego typu bramka jest odizolowana od kanału warstwą dielektryka. Tranzystory te posiadają przynajmniej trzy elektrody: źródło (S), bramkę (G) i dren (D), często mają również czwartą elektrodę: podłoże (B). Wykonuje się je głównie w układach scalonych, rzadziej natomiast jako elementy dyskretne – są to głównie tranzystory mocy, np. pracujące jako szybkie przełączniki w zasilaczach impulsowych. W przypadku konstrukcji układów scalonych CMOS może istnieć więcej niż jedna bramka, co występuje także w niektórych elementach dyskretnych.

Tranzystor bipolarny (dawniej: tranzystor warstwowy, tranzystor złączowy) to odmiana tranzystora, półprzewodnikowy element elektroniczny, mający zdolność wzmacniania sygnału. Zbudowany jest z trzech warstw półprzewodnika o różnym typie przewodnictwa. Charakteryzuje się tym, że niewielki prąd płynący pomiędzy dwiema jego elektrodami (nazywanymi bazą i emiterem) steruje większym prądem płynącym między emiterem, a trzecią elektrodą (nazywaną kolektorem).

Tranzystor bipolarny składa się z trzech warstw półprzewodnika o różnym typie przewodnictwa: p-n-p lub n-p-n (istnieją więc dwa rodzaje tranzystorów bipolarnych: pnp i npn). Poszczególne warstwy noszą nazwy:

W ten sposób tworzą się dwa złącza p-n: baza-emiter (nazywane krótko złączem emitera) oraz baza-kolektor (nazywane złączem kolektora).

W normalnych warunkach pracy złącze emiter-baza jest spolaryzowane w kierunku przewodzenia, a złącze baza-kolektor - w kierunku zaporowym. Napięcie baza-emiter powoduje przepływ (wstrzykiwanie) nośników większościowych emitera przez to złącze do bazy – (elektrony w tranzystorach npn lub dziury w tranzystorach pnp). Nośników przechodzących w przeciwną stronę, od bazy do emitera jest niewiele, ze względu na słabe domieszkowanie bazy. Nośniki wstrzyknięte z emitera do obszaru bazy dyfundują do obszarów mniejszej ich koncentracji w kierunku kolektora. Trafiają do obszaru złącza baza-kolektor, a tu na skutek pola elektrycznego w obszarze zubożonym są przyciągane do kolektora.

W rezultacie, po przyłożeniu do złącza emiterowego napięcia w kierunku przewodzenia, popłynie niewielki prąd między bazą a emiterem, umożliwiający przepływ dużego prądu między kolektorem a emiterem. Stosunek prądu kolektora do prądu bazy nazywany jest wzmocnieniem prądowym tranzystora i oznacza się grecką literą β.

IGBT (Insulated Gate Bipolar Transistor) - tranzystor bipolarny z izolowaną bramką. Jest to element półprzewodnikowy mocy używany w przekształtnikach energoelektronicznych o mocach do kilkuset kilowatów.

Łączy zalety dwóch typów tranzystorów: łatwość sterowania tranzystorów polowych i wysokie napięcie przebicia oraz szybkość przełączania tranzystorów bipolarnych; jest wykorzystywany m.in. w falownikach jako łącznik, umożliwia załączanie prądów do 1 kA i blokowanie napięć do 6 kV.

Tranzystor IGBT powstał przez połączenie w obszarze monolitycznego materiału półprzewodnikowego tranzystora bipolarnego z tranzystorem polowym typu MOS. Utworzona w ten sposób struktura ma pozytywne cechy obu elementów i stanowi półprzewodnikowy łącznik przydatny do układów o mocy nawet kilkuset kilowatów i pracujący z częstotliwością przełączania sięgającą 50 kHz. Maksymalne dopuszczalne wartości blokowanego napięcia przekraczają 6 kV, co oznacza pełną przydatność IGBT układach zasilanych z sieci o napięciu skutecznym 400 V i wyższym.

Tyrystor - element półprzewodnikowy składający się z 4 warstw w układzie p-n-p-n. Jest on wyposażony w 3 elektrody, z których dwie są przyłączone do warstw skrajnych, a trzecia do jednej z warstw środkowych. Elektrody przyłączone do warstw skrajnych nazywa się katodą (K) i anodą (A), a elektroda przyłączona do warstwy środkowej – bramką (G, od ang. gate – bramka).

Tyrystor przewodzi w kierunku od anody do katody. Jeżeli anoda jest o dodatnim potencjale względem katody, to złącza skrajne typu p-n są spolaryzowane w kierunku przewodzenia, a złącze środkowe n-p w kierunku zaporowym. Dopóki do bramki nie doprowadzi się napięcia, tyrystor nie przewodzi prądu. Doprowadzenie do bramki dodatniego napięcia względem katody spowoduje przepływ prądu bramkowego i właściwości zaporowe środkowego złącza zanikają w ciągu kilku mikrosekund; następuje wyzwolenie tyrystora. Moment ten nazywany bywa "zapłonem" tyrystora (określenie to pochodzi z czasów, kiedy funkcję tyrystorów pełniły lampy elektronowe – tyratrony, w których przewodzenie objawiało się świeceniem zjonizowanego gazu).

W przeciwieństwie do tranzystora wyzwolony tyrystor nadal przewodzi prąd po ustaniu sygnału sterującego bramką (brak przyłożonego napięcia do bramki), co jest jego niewątpliwą zaletą (brak dodatkowych strat sterowania). Traci on te właściwości dopiero po zaniku prądu obciążenia (poniżej wartości prądu przewodzenia, minimalny prąd podtrzymania) lub przy odwrotnej polaryzacji elektrod. Wówczas konieczny jest ponowny zapłon tyrystora.

Zalety:

Wady:

Triak (symistor) – element półprzewodnikowy należący do rodziny tyrystorów. Ma pięciowarstwową strukturę n-p-n-p-n, pod względem funkcjonalnym jest odpowiednikiem dwóch tyrystorów połączonych antyrównolegle (przeciwsobnie i równolegle).

Triak ma trzy końcówki, 2 anody A1 i A2 (oznaczane też MT1 i MT2) oraz bramkę G. Triakistosowane są w obwodach prądu przemiennego przewodzą prąd w obu kierunkach, triak włączany jest prądem bramki, wyłącza się gdy natężenie prądu jest równe zero. Używane są jako łączniki dwukierunkowe, przekaźniki oraz regulatory mocy. Triaki bardzo często są sterowane przez diaki.

Działanie triaka jest analogiczne do przeciwsobnego połączenia dwóch tyrystorów (SCR). Triak posiada tylko jedną bramkę – włączenie następuje niezależnie od polaryzacji (w przeciwieństwie do tyrystora, który może być załączony tylko jeśli potencjał anody jest większy od potencjału katody). Triak działa w obu kierunkach polaryzacji i zachowuje się jak tyrystor w dodatniej części swojej charakterystyki (stan blokowania bądź przewodzenia) – charakterystyka triaka jest symetryczna względem początku układu współrzędnych, a w części dodatniej jest charakterystyką tyrystora

Stabilizator – układ elektroniczny, którego zadaniem jest utrzymywanie na wyjściu stałego napięcia (stabilizator napięcia) lub prądu (stabilizator prądu) niezależnie od obciążenia układu i wahań napięcia zasilającego. Oprócz najczęściej spotykanych stabilizatorów napięcia (prądu) stałego istnieją również stabilizatory napięcia (prądu) przemiennego. W praktyce stabilizatory prądu buduje się w oparciu o stabilizatory napięcia.

Najprostszym stabilizatorem napięcia jest układ z wykorzystaniem diody Zenera, pokazany na rysunku. Takie i podobne układy nazywane są również stabilizatorami parametrycznymi.

W układzie stabilizatora parametrycznego efekt stabilizacji uzyskuje się wykorzystując kształt charakterystyk elementu regulacyjnego, stabilistora, np. diody Zenera.


Zasilacz impulsowy – zasilacz zbudowany w oparciu o przetwornicę napięcia.

Pierwsza sekcja, występująca tylko w zasilaczach sieciowych, służy do przetworzenia napięcia przemiennego na napięcie jednokierunkowe i zmniejszenie jego zmian. Sekcja ta składa się z prostownika (zwykle mostka Graetza) i kondensatorów wygładzających tętnienia.

Napięcie stałe dociera do sekcji kluczującej. W zasilaczach impulsowych jako klucze wykorzystuje się tranzystory, przełączane między stanem nasycenia i zatkania przy pomocy impulsów sterujących o zmiennej długości (modulacja szerokości impulsów). Utworzony w ten sposób przebieg prostokątny napięcia trafia na uzwojenie pierwotne transformatora. Częstotliwość impulsów (dochodząca do setek kHz) jest o wiele większa od częstotliwości sieci energetycznej, dzięki temu transformatory stosowane w zasilaczach impulsowych mogą być znacznie mniejsze niż w przypadku tradycyjnych zasilaczy transformatorowych.

Napięcie wychodzące z uzwojenia wtórnego transformatora zasilacza impulsowego trafia do prostownika złożonego z diod pracujących z dużą częstotliwością. Tętnienia napięcia są wygładzane przez dławiki i kondensatory o dużej pojemności. Często stosuje się transformatory o kilku uzwojeniach wtórnych, co pozwala zwiększyć ilość dostępnych napięć wyjściowych.

Zalety zasilacza impulsowego:

Wady:

Zasilacze impulsowe prawie całkowicie wyparły zasilacze transformatorowe. Stosowane są w praktycznie wszystkich urządzeniach podłączanych do napięcia sieciowego (w zależności od regionu świata pomiędzy 100-240V i 50-60Hz): telewizory, komputery i osprzęt, ładowarki telefonów komórkowych, zasilacze urządzeń przenośnych i stacjonarnych itp., prócz klasycznych wzmacniaczy audio. Jednak i w tych ostatnich producenci niekiedy decydują się na stosowanie przetwornicy.

Prostownik jest to element lub zestaw elementów elektronicznych służący do zamiany napięcia przemiennego na napięcie jednego znaku, które po dalszym odfiltrowaniu może być zmienione na napięcie stałe. Prostowniki są stosowane w energetyce, zasilaniu maszyn i urządzeń (np. w lokomotywach elektrycznych), w galwanotechnice oraz w większości urządzeń elektronicznych zasilanych z sieci energetycznej lub jakimkolwiek napięciem przemiennym (np. układy elektryczne samochodów). Prostownikiem jest również detektor diodowy wykorzystywany do detekcji sygnału radiowego zmodulowanego AM lub FM.

Układy prostownikowe, w zależności od struktury i liczby faz zasilającego napięcia przemiennego, dzieli się na:

Jeżeli napięcie podlega prostowaniu w czasie jednego półokresu każdej z faz, to prostownik jest nazywany półfalowym lub jednokierunkowym. Jeżeli natomiast napięcie prostowane jest w czasie obu półokresów, to prostownik jest nazywany całofalowym, dwukierunkowym lub mostkowym. Dodatkowy podział układów prostowniczych występuje ze względu na elementy z jakich został on wykonany:

Jednopołówkowe (półokresowe)

Najprostszym prostownikiem jest pojedyncza dioda prostownicza wpięta w układ napięcia przemiennego. Pomimo prostoty takiego układu jest on bardzo rzadko stosowany z uwagi na występowanie dużego tętnienia napięcia wyjściowego. Dodatkowo, energia dostarczana przez źródło wykorzystywana jest tylko przez pół okresu - podczas drugiej połowy okresu napięcie jest po prostu blokowane i prąd w układzie nie płynie. Wprowadza to niesymetrię obciążenia układu prądu przemiennego, co jest niekorzystne dla sieci prądu przemiennego. Z powyższych powodów rozwiązanie stosowane tylko w układach niewielkiej mocy. Rozwiązanie to jest powszechnie stosowane w zasilaczach impulsowych małych mocy.

Dwupołówkowe (pełnookresowe)

Prostowniki dwupołówkowe umożliwiają wykorzystanie mocy źródła napięcia przemiennego przez cały okres. Napięcie wyjściowe takiego prostownika charakteryzuje się mniejszymi tętnieniami niż w przypadku prostowników jednopołówkowych. Jedyną wadą jest to, że układ elektryczny jest nieznacznie bardziej skomplikowany. Układ mostkowy, tzw. mostek Graetza, wykorzystuje cztery diody prostownicze, i pozwala na prostowanie napięcia z dowolnego źródła przemiennego. Istnieje również konstrukcja oparta na dwóch diodach, jednak wymaga ona specjalnego zasilania - uzwojenie wtórne transformatora musi być podzielone na dwie jednakowe części. Obecnie układy takie stosuje się niezwykle rzadko, ponieważ koszt dzielonego uzwojenia jest znacznie większy niż koszt diod użytych w układzie mostkowym.

Obecnie jednym z najczęściej stosowanych prostowników jednofazowych jest mostek Graetza. Proces prostowania napięcia przebiega w dwóch etapach. W pierwszej połówce okresu przewodzą tylko dwie diody tak jak to pokazano na rysunku obok (pozostałe dwie diody są spolaryzowane zaporowo). W drugiej połówce okresu sytuacja ulega odwróceniu - przewodzą dwie pozostałe diody . Napięcie wejściowe jest napięciem przemiennym czyli zmienia swój kierunek na dodatni i ujemny, natomiast układ mostka jest tak skonstruowany, że napięcie wyjściowe jest jednokierunkowe - płynie tylko w kierunku dodatnim (patrz również rysunek powyżej). Pomimo faktu, że napięcie wyjściowe prostownika jest jednokierukowe to jednak nie jest ono napięciem stałym i wykazuje znaczne tętnienie - dlatego też prostowniki najczęściej stosuje się z odpowiednimi filtrami dolnoprzepustowymi wygładzającymi przebieg.


Prostowniki trójfazowe wykorzystuje się tam, gdzie dostępne jest trójfazowe zasilanie. Generalnie charakteryzują się one znacznie mniejszym tętnieniem napięcia wyjściowego niż prostowniki jednofazowe.

Jednopołówkowe

Trójfazowy prostownik jednopołówkowy może działać tylko w układzie trójfazowym z przewodem neutralnym.Oznacza to, że układ źródeł napięcia (lub uzwojeń wtórnych transformatora) musi być połączony w gwiazdę (połączenie w trójkąt nie ma przewodu zerowego). Rozróżnia się układ prostownika trójfazowego jednopołówkowego z gwiazdą katodową lub gwiazdą anodową.

Dwupołówkowe

Trójfazowy prostownik dwupołówkowy może być stosowany w dowolnym układzie napięcia trójfazowego - zarówno z przewodem neutralnym jak i bez niego. Napięcie wyjściowe wykazuje bardzo małe tętnienie (w porównaniu do prostowników opisanych powyżej). Energia źródeł zasilania jest wykorzystywana w największym zakresie, co jest szczególnie istotne w przypadku urządzeń dużej mocy, jak np. spawarki transformatorowe. Często prostowniki w tego typu urządzeniach posiadają możliwość sterowania wartością prądu wyjściowego - zobacz poniżej opis prostowników sterowanych.


Wyszukiwarka

Podobne podstrony:
Podstawy elektroniki i energoelektroniki prezentacja ppt
Podst elektron i energoelekron wyklad1
UKŁADY ENERGOELEKTRONICZNE W GRZEJNICTWIE 5F SZER
1 Klucze w energoelektronice
Elementy energoelektroniczne III Energetyka
dom energo
Budownictwo energooszczedne id Nieznany
energoefekt artykul transmisja danych GPRS NiS[1]
tabelka2008, EiE labo, Elektronika i Energoelektronika. Laboratorium, 00.Materiały o wyposażeniu lab
elektronika praca kontrolna, EiE labo, Energoelektronika1
Poziomy energooszczędności w budownictwie
3ed L3 zespół 1 energoelektronika
energoelektronika 7 protokoł
Energol HLP HM 32
energooszcz dom
Bud Energo wprowadzenie
SURTEL, Politechnika Lubelska, Studia, Studia, sem VI, energoelektronika, Energoelektronika, Surtel

więcej podobnych podstron