Bilans cieplny.
Przychód
Wartość opałowa gazu koksowniczego
$$Q_{\text{ig}} = \frac{\left( \left\lbrack \text{CO} \right\rbrack \bullet Q_{\text{CO}} + \left\lbrack H_{2} \right\rbrack \bullet Q_{H_{2}} + \text{CH}_{4} \bullet Q_{\text{CH}_{4}} + \lbrack C_{n}H_{m}\rbrack \bullet Q_{C_{n}H_{m}} \right)}{100}\ \left\lbrack \frac{\text{kJ}}{m^{3}} \right\rbrack$$
[CO] = 6,0 %
[H2] = 58,5 %
[CH4] = 26,3 %
[CnHm] = 2,8 %
$Q_{\text{CO}} = 12470\ \frac{\text{kJ}}{m^{3}}$
$Q_{H_{2}} = 10620\ \frac{\text{kJ}}{m^{3}}$
$Q_{\text{CH}_{4}} = 35330\ \frac{\text{kJ}}{m^{3}}$
$Q_{C_{n}H_{m}} = 59170\ \frac{\text{kJ}}{m^{3}}$
$\mathbf{Q}_{\mathbf{\text{ig}}}\mathbf{= 17909,45}\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}\mathbf{\ }$
Zawartość wilgoci w gazie koksowniczym
pH2O, tg = 19890 Pa
φg = 0, 75
pg = 132500 Pa $W_{g} = \frac{p_{H_{2}O,t_{g}} \bullet \varphi_{g}}{\left( p_{g} - p_{H_{2}O,t_{g}} \bullet \varphi_{g} \right)}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{W}_{\mathbf{g}}\mathbf{= 0,127\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Entalpia fizyczna wilgotnego gazu koksowniczego
tg = 60 C
$c_{CO2}^{0 - 60} = 1,72\ \frac{\text{kJ}}{\text{Km}^{3}}$ [CO2] = 2,6 %
cCO0 − 60 = 1, 28 $\frac{\text{kJ}}{\text{Km}^{3}}$ [CO] = 6,0 %
$c_{H2}^{0 - 60} = 1,30\ \frac{\text{kJ}}{\text{Km}^{3}}$ [H2] = 58,5 %
$c_{CH4}^{0 - 60} = 1,56\ \frac{\text{kJ}}{\text{Km}^{3}}$ [CH4] = 26,3 %
$c_{N2}^{0 - 60} = 1,28\ \frac{\text{kJ}}{\text{Km}^{3}}$ [N2] = 3,2 %
$c_{O2}^{0 - 60} = 1,31\ \frac{\text{kJ}}{\text{Km}^{3}}$ [O2] = 0,6 %
$c_{C2H4}^{0 - 60} = 2,14\ \frac{\text{kJ}}{\text{Km}^{3}}$ [C2H4] = 2,8 %
$c_{H2O}^{0 - 60} = 1,45\ \frac{\text{kJ}}{\text{Km}^{3}}$
$W_{g} = 0,127\ \frac{m^{3}}{m^{3}}$ $Q_{2}^{'p} = t_{g} \bullet \left( \frac{\sum_{i}^{}{c_{i} \bullet \left\lbrack i \right\rbrack}}{100} + W_{g} \bullet c_{H_{2}O}^{'} \right)\left\lbrack \frac{\text{kJ}}{m^{3}} \right\rbrack$ $\mathbf{Q}_{\mathbf{2}}^{\mathbf{'p}}\mathbf{= 95,15}\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
Zapotrzebowanie na powietrze do spalania gazu
Ilość potrzebnego tlenu:
[CO] = 6,0 %
[H2] = 58,5 %
[CH4] = 26,3 %
[CnHm] = 2,8 %
[O2] = 0,6 % $V_{O} = \frac{\left( \left\lbrack \text{CO} \right\rbrack \bullet 0,5 + \left\lbrack H_{2} \right\rbrack \bullet 0,5 + \text{CH}_{4} \bullet 2 + \left\lbrack C_{n}H_{m} \right\rbrack \bullet 3 - \left\lbrack O_{2} \right\rbrack \right)}{100}\left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{V}_{\mathbf{O}}\mathbf{= 0,927\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Ilość potrzebnego powietrza:
$V_{O} = 0,927\ \frac{m^{3}}{m^{3}}$
λ = 1, 12 $V_{a} = 4,76 \bullet \lambda \bullet V_{O}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{V}_{\mathbf{a}}\mathbf{= 4,94\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Zawartość wilgoci w powietrzu:
pH2O, tp = 4026, 5 Pa
φp = 0, 75
pg = 100330 Pa $W_{p} = \frac{p_{H_{2}O,t_{p}} \bullet \varphi_{p}}{\left( p_{g} - p_{H_{2}O,t_{p}} \bullet \varphi_{p} \right)}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{W}_{\mathbf{p}}\mathbf{= 0,031\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Entalpia fizyczna powietrza wilgotnego:
$$Q_{3}^{'p} = V_{a} \bullet t_{p} \bullet \left( 0,79 \bullet c_{N_{2}}^{''} \bullet 0,21 \bullet c_{O_{2}}^{''} + W_{p} \bullet c_{H_{2}O}^{''} \right)\ \left\lbrack \frac{\text{kJ}}{m^{3}} \right\rbrack$$
$V_{a} = 4,94\ \frac{m^{3}}{m^{3}}$
tp = 29 C
$c_{\text{pow}}^{0 - 29} = 1,28\ \frac{\text{kJ}}{\text{Km}^{3}}$
$c_{H2O}^{0 - 29} = 1,46\ \frac{\text{kJ}}{\text{Km}^{3}}$
$W_{p} = 0,031\ \frac{m^{3}}{m^{3}}$
$\mathbf{Q}_{\mathbf{3}}^{\mathbf{'p}}\mathbf{= 189,39\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
Entalpia fizyczna wsadu węglowego
Ciepło właściwe części organicznej:
$\overset{\overline{}}{c_{c}} = 0,883 \bullet \left( 1 + 0,008V^{d} \right) \bullet \left\lbrack 1 + 0,15 \bullet \frac{t_{w}}{100} - 0,0008\left( \frac{t_{w}}{100} \right)^{3} \right\rbrack\left\lbrack \frac{\text{kJ}}{\text{kgK}} \right\rbrack$
VdVd = 28,90 %
tw = 22 C
$\overset{\overline{}}{\mathbf{c}_{\mathbf{c}}}\mathbf{= 1,123\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$
Ciepło właściwe części mineralnej:
tw = 22 C ${\overset{\overline{}}{\mathbf{c}}}_{\mathbf{\text{AW}}}\mathbf{= 4,187 \bullet}\left( \mathbf{0,17 +}\frac{\mathbf{0,12 \bullet}\mathbf{t}_{\mathbf{w}}}{\mathbf{1000}} \right)\mathbf{\ }\left\lbrack \frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}} \right\rbrack$ ${\overset{\overline{}}{\mathbf{c}}}_{\mathbf{\text{AW}}}\mathbf{= 0,723\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$
Średnie ciepło właściwe wsadu suchego:
Ad = 7, 59 %
$\overset{\overline{}}{c_{c}} = 1,123\ \frac{\text{kJ}}{\text{kgK}}$
${\overset{\overline{}}{c}}_{\text{AW}} = 0,723\ \frac{\text{kJ}}{\text{kgK}}$ ${\overset{\overline{}}{c}}_{w} = \left( 1 - \frac{A^{d}}{100} \right) \bullet {\overset{\overline{}}{c}}_{c} + \frac{A^{d}}{100} \bullet {\overset{\overline{}}{c}}_{\text{AW}}\ \left\lbrack \frac{\text{kJ}}{\text{kgK}} \right\rbrack$ ${\overset{\overline{}}{\mathbf{c}}}_{\mathbf{w}}\mathbf{= 1,093\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$
Entalpia fizyczna wsadu węglowego:
$M_{W}^{d} = \ 924,28\ \frac{\text{kg}}{\text{Mg}}$
${\overset{\overline{}}{c}}_{w} = 1,093\ \frac{\text{kJ}}{\text{kgK}}$
M(H2O)wd = 75,72 $\frac{\text{kg}}{\text{Mg}}$
$c_{\left( H_{2}O \right)} = 4,187\ \frac{\text{kJ}}{\text{kgK}}$
tw = 22 C $Q_{4}^{p} = \left( M_{w}^{d} \bullet {\overset{\overline{}}{c}}_{w} + M_{\left( H_{2}O \right)w} \bullet c_{\left( H_{2}O \right)} \right) \bullet t_{w}\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{4}}^{\mathbf{p}}\mathbf{= 29\ 193,6}\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Rozchód
Entalpia fizyczna koksu
Zawartość popiołu w suchym koksie:
Ad = 7, 59 %
Kd = 75, 69 % $A_{k}^{d} = A^{d} \bullet \frac{100}{K^{d}}\ \lbrack\%\rbrack$ Akd=10, 03 %
Zawartość części organicznej w suchym koksie:
Akd = 10, 03 %
Vkd = 1, 4 % Ord = 100 − (Akd+Vkd)[%] Ord=88, 57 %
Średnie ciepło właściwe koksu:
Akd = 10, 03 %
Ord = 88, 57 %
Vkd = 1, 4 %
${\overset{\overline{}}{c}}_{A} = 1,07\ \frac{\text{kJ}}{\text{kgK}}$
${\overset{\overline{}}{c}}_{\text{Or}} = 1,52\ \frac{\text{kJ}}{\text{kgK}}$
${\overset{\overline{}}{c}}_{V} = 1,83\ \frac{\text{kJ}}{\text{Km}^{3}}$
$\rho_{g} = 0,46\ \frac{\text{kg}}{m_{3}}$ ${\overset{\overline{}}{c}}_{k} = \frac{A_{k}^{d}}{100} \bullet {\overset{\overline{}}{c}}_{A} + \frac{O_{r}^{d}}{100} \bullet {\overset{\overline{}}{c}}_{B} + \frac{V_{k}^{d}}{100 \bullet \rho_{g}} \bullet {\overset{\overline{}}{c}}_{V}\ \left\lbrack \frac{\text{kJ}}{\text{kgK}} \right\rbrack$ ${\overset{\overline{}}{\mathbf{c}}}_{\mathbf{k}}\mathbf{= 1,507\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$
Średnia temperatura koksu:
tk = 1050 C
t = 25 tk1 = tk + t [] tk1=1 075 C
Entalpia fizyczna koksu:
$M_{k} = 699,60\ \frac{\text{kg}}{\text{Mg}}$
${\overset{\overline{}}{c}}_{k} = 1,507\ \frac{\text{kJ}}{\text{kgK}}$
tk1 = 1075 C $Q_{1}^{r} = M_{k}^{r} \bullet {\overset{\overline{}}{c}}_{k} \bullet t_{k1\ }\left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{1}}^{\mathbf{r}}\mathbf{= 1\ 133\ 540\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia fizyczna suchego gazu koksowniczego:
$$Q_{2}^{r} = \frac{2}{3} \bullet V_{g} \bullet c_{g}^{0 - t_{g1}} \bullet t_{g1} + \frac{1}{3} \bullet V_{g} \bullet c_{g}^{0 - t_{g2}} \bullet t_{g2}\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$$
$V_{g} = \ 327,49\ \frac{m^{3}}{\text{Mg}}$
$c_{g}^{0 - t_{g1}} = 1,663\ \frac{\text{kJ}}{\text{kgK}}$
tg1 = 690 C
$c_{g}^{0 - t_{g2}} = 1,689\ \frac{\text{kJ}}{\text{kgK}}$
tg2 = 750 C
$$\mathbf{Q}_{\mathbf{2}}^{\mathbf{r}}\mathbf{= 388799,4\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$$
Entalpia fizyczna smoły, benzolu, amoniaku i siarkowodoru zawartych w surowym gazie koksowniczym
Entalpia fizyczna smoły
Średnia temperatura par smoły, benzolu, amoniaku i siarkowodoru:
tg1 = 690 C
tg2 = 750 C $t_{\text{Sm}} = \frac{2}{3} \bullet t_{g1} + \frac{1}{3} \bullet t_{g2}\ \lbrack\rbrack$ tSm=710 C
Średnie ciepło właściwe smoły w temperaturze 0-tSm:
tSm = 710 C $c_{\text{Sm}}^{0 - t_{\text{Sm}}} = 4,187 \bullet \left( 0,305 + 0,000392 \bullet t_{\text{Sm}} \right)\ \left\lbrack \frac{\text{kJ}}{\text{kgK}} \right\rbrack$
$$\mathbf{c}_{\mathbf{\text{Sm}}}^{\mathbf{0 -}\mathbf{t}_{\mathbf{\text{Sm}}}}\mathbf{= 2,442\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$$
Entalpia fizyczna smoły:
$M_{\text{Sm}}^{r} = 34,69\ \frac{\text{kg}}{\text{Mg}}$
$q_{\text{Sm}} = 415\ \frac{\text{kJ}}{\text{kg}}$
$c_{\text{Sm}}^{0 - t_{\text{Sm}}} = 2,442\ \frac{\text{kJ}}{\text{kgK}}$
tSm = 710 C $Q_{\text{Sm}}^{r} = M_{\text{Sm}}^{r} \bullet \left( q_{\text{Sm}} + c_{\text{Sm}}^{0 - t_{\text{Sm}}} \bullet t_{\text{Sm}} \right)\left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{\text{Sm}}}^{\mathbf{r}}\mathbf{= 74\ 547,58}\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia fizyczna benzolu
Średnie ciepło właściwe benzolu:
tSm = 710 C
$M_{B} = 84\frac{\text{kg}}{\text{kmol}}\ $ $c_{B}^{0 - t_{\text{Sm}}} = \frac{4,187 \bullet \left( 20,7 + 0,026 \bullet t_{\text{Sm}} \right)}{M_{B}}\ \left\lbrack \frac{\text{kJ}}{\text{kgK}} \right\rbrack$ $\mathbf{c}_{\mathbf{B}}^{\mathbf{0 -}\mathbf{t}_{\mathbf{\text{Sm}}}}\mathbf{= 1,952\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{kgK}}}$
Entalpia fizyczna benzolu:
$M_{B}^{r} = 15,19\ \frac{\text{kg}}{\text{Mg}}$
$q_{B} = 435\ \frac{\text{kJ}}{\text{kg}}\ $
$c_{B}^{0 - t_{\text{Sm}}} = 1,952\ \frac{\text{kJ}}{\text{kgK}}$
tSm = 710 C $Q_{B}^{r} = M_{B}^{r} \bullet \left( q_{B} + c_{B}^{0 - t_{\text{Sm}}} \bullet t_{\text{Sm}} \right)\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{B}}^{\mathbf{r}}\mathbf{= 27\ 653,76\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia fizyczna amoniaku:
$M_{N}^{r} = 2,45\ \frac{\text{kg}}{\text{Mg}}$
$c_{\text{NH}_{3}}^{0 - t_{\text{Sm}}} = 2,657\ \frac{\text{kJ}}{\text{kgK}}$
tSm = 710 C $Q_{\text{NH}_{3}}^{r} = M_{\text{NH}_{3}}^{r} \bullet c_{\text{NH}_{3}}^{0 - t_{\text{Sm}}} \bullet t_{\text{Sm}}\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{\text{NH}}_{\mathbf{3}}}^{\mathbf{r}}\mathbf{= 4\ 617,86}\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia fizyczna siarkowodoru:
$M_{S}^{r} = 1,32\ \frac{\text{kg}}{\text{Mg}}$
$c_{H_{2}S}^{0 - t_{\text{Sm}}} = 1,414\ \frac{\text{kJ}}{\text{kgK}}$
tSm = 710 C $Q_{H_{2}S}^{r} = M_{H_{2}S}^{r} \bullet c_{H_{2}S}^{0 - t_{\text{Sm}}} \bullet t_{\text{Sm}}\ \left\lbrack \frac{\text{kJ}}{Mg} \right\rbrack$ $\mathbf{Q}_{\mathbf{H}_{\mathbf{2}}\mathbf{S}}^{\mathbf{r}}\mathbf{= 1\ 320,56}\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia sumaryczna:
$Q_{\text{Sm}}^{r} = 74\ 547,58\frac{\text{kJ}}{\text{Mg}}$
$Q_{B}^{r} = 27\ 653,76\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{\text{NH}_{3}}^{r} = 4\ 617,86\frac{\text{kJ}}{\text{Mg}}$
$Q_{H_{2}S}^{r} = 1\ 320,56\frac{\text{kJ}}{\text{Mg}}$ $Q_{3}^{r} = Q_{\text{Sm}}^{r} + Q_{B}^{r} + Q_{\text{NH}_{3}}^{r} + Q_{H_{2}\text{S\ }}^{r}\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$ $\mathbf{Q}_{\mathbf{3}}^{\mathbf{r}}\mathbf{= 108\ 139,8\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Entalpia pary wodnej zawartej w surowym gazie koksowniczym:
$$Q_{4}^{r} = \left( M_{\left( H_{2}O \right)w}^{r} + M_{O}^{r} \right) \bullet \left\lbrack 2491 + c_{\text{pw}}^{0 - t_{\text{Sm}}} \bullet \left( t_{\text{Sm}} - 100 \right) \right\rbrack\ \left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$$
M(H2O)wd = 75,72 $\frac{\text{kg}}{\text{Mg}}$
$M_{O}^{r} = 21,97\ \frac{\text{kg}}{\text{Mg}}$
$c_{\text{pw}}^{0 - t_{\text{Sm}}} = 2,046\ \frac{\text{kJ}}{\text{kgK}}$
tSm = 710 C
$\mathbf{Q}_{\mathbf{4}}^{\mathbf{r}}\mathbf{= 365\ 258,7\ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$
Straty ciepła do otoczenia
Całkowity wsad rzeczywisty do komory:
$\rho_{w} = 0,75\ \frac{\text{Mg}}{m^{3}}$
VU = 38, 29 m3 MWKr = ρw • VU [Mg] MWKr=28, 72 Mg
Powierzchnie baterii oddające ciepło do otoczenia
Całkowita długość komory:
luz = 16, 8 m l = luz + 0, 6 [m] l = 17, 4 m
Podziałka pieca:
bsr = 0, 43 m A = bsr + 0, 7 [m] A = 1, 13 m
Wysokość całkowita komory:
huz = 5, 3 m hk = huz + 0, 3 [m] hk=5, 6 m
Szerokość komory od strony maszynowej:
bsr = 0, 43 m
zb = 0, 076 m $b_{m} = b_{sr} - \frac{z_{b}}{2}\ \lbrack m\rbrack$ bm=0, 39 m
Szerokość komory od strony koksowej:
bsr = 0, 43 m
zb = 0, 076 m $b_{k} = b_{sr} + \frac{z_{b}}{2}\ \lbrack m\rbrack$ bk=0, 47 m
Powierzchnia całkowita otworów zasypowych:
k = 5
Fk = 0, 46 m2 F1 = k • Fk [m2] F1=2, 3 m2
Powierzchnia sklepienia komory:
bsr = 0, 43 m
l = 17, 4 m
F1 = 2, 3 m2 F2 = bsr • l − F1 [m2] F2=5, 18 m2
Powierzchnia całkowita wzierników:
m = 32
Fm = 0, 05 m2 F3 = m • Fm [m2] F3=1.6 m2
Powierzchnia sklepienia ściany grzewczej:
A = 1, 13 m
bsr = 0, 43 m
l = 17, 4 m
F3 = 1.6 m2 F4 = (A−bsr) • l − F3 [m2] F4=10, 58 m2
Powierzchnia ścian czołowych sklepienia:
A = 1, 13 m
hc = 1, 5 m F5 = F11 = A • hc [m2] F5=F11=1, 70m2
Powierzchnia drzwi od strony maszynowej:
hk = 5, 6 m
bm = 0, 39 m F6 = hk • bm [m2] F6=2, 20 m2
Powierzchnia drzwi od strony koksowej:
hk = 5, 6 m
bk = 0, 47 m F7 = hk • bk [m2] F7=2, 62 m2
Powierzchnia czołowa ściany grzewczej od strony maszynowej:
A = 1, 13 m
bm = 0, 39 m
hk = 5, 6 m F8 = (A−bm) • hk [m2] F8=4, 13 m2
Powierzchnia czołowa ściany grzewczej od strony koksowej:
A = 1, 13 m
bk = 0, 47 m
hk = 5, 6 m F9 = (A−bk) • hk [m2] F9=3, 71 m2
Powierzchnia czołowa strefy regeneratorów i kanałów skośnych:
A = 1, 13 m
hr = 4, 5 m F10 = 2 • A • hr [m2] F10=10, 17 m2
Współczynnik wymiany ciepła przez konwersję:
$W = 4,9\ \frac{m}{s}$ $\alpha_{k} = \left( 5,3 + 3,6 \bullet W \right) \bullet 1,163\ \left\lbrack \frac{W}{m^{2}K} \right\rbrack$ $\mathbf{\alpha}_{\mathbf{k}}\mathbf{= 26,68\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
Współczynnik wymiany ciepła przez promieniowanie:
$$\alpha_{r_{i}} = \frac{C_{0} \bullet \varepsilon \bullet \left\lbrack \left( \frac{T_{F}}{100} \right)^{4} - \left( \frac{T_{\text{ot}}}{100} \right)^{4} \right\rbrack}{t_{F} - t_{\text{ot}}}\ \left\lbrack \frac{W}{m^{2}K} \right\rbrack$$
t1 = 240 C T1 = 513 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{1}}\mathbf{= 16,62}\mathbf{\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t2 = 120 C T2 = 393 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{2}}\mathbf{= 9,88\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t3 = 210 C T3 = 483 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{3}}\mathbf{= 14,68\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t4 = 140 C T4 = 413 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{4}}\mathbf{= 10,82\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t5 = 100 C T5 = 373 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{5}}\mathbf{= 9,01\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t6 = 160 C T6 = 433 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{6}}\mathbf{= 11,83\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t7 = 150 C T7 = 423 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{7}}\mathbf{= 11,32\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t8 = 140 C T8 = 413 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{8}}\mathbf{= 10,82\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t9 = 120 C T9 = 393 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{9}}\mathbf{= 9,88\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t10 = 70 C T10 = 343 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{10}}\mathbf{= 7,82\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
t11 = 70 C T11 = 343 K $\mathbf{\alpha}_{\mathbf{r}\mathbf{11}}\mathbf{= 7,82\ }\frac{\mathbf{W}}{\mathbf{m}^{\mathbf{2}}\mathbf{K}}$
$$C_{0} = 5,77\ \frac{W}{m^{2}K^{4}}$$
ε = 0, 98
Tot = 308 K
tot = 35 C
Wielkość strumienia cieplnego oddawanego przez poszczególne powierzchnie w ciągu 1 godziny:
$$q_{i} = \left( \alpha_{k} + \alpha_{r_{i}} \right) \bullet \left( t_{F} - t_{\text{ot}} \right) \bullet 3,6\ \left\lbrack \frac{\text{kJ}}{m^{2}h} \right\rbrack$$
t1 = 240 C $\alpha_{r1} = 16,62\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{1}}\mathbf{= 33\ 670,58\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t2 = 120 C $\alpha_{r2} = 9,88\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{2}}\mathbf{= 12\ 635,71\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t3 = 210 C $\alpha_{r3} = 14,68\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{3}}\mathbf{= 27\ 692,52\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t4 = 140 C $\alpha_{r4} = 10,82\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{4}}\mathbf{= 15\ 660,35\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t5 = 100 C $\alpha_{r5} = 9,01\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{5}}\mathbf{= 9\ 764,72\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t6 = 160 C $\alpha_{r6} = 11,83\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{6}}\mathbf{= 18\ 854,48\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t7 = 150 C $\alpha_{r7} = 11,32\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{7}}\mathbf{= 17\ 235,21\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t8 = 140 C $\alpha_{r8} = 10,82\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{8}}\mathbf{= 15\ 660,35\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t9 = 120 C $\alpha_{r9} = 9,88\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{9}}\mathbf{= 12\ 635,71\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t10 = 70 C $\alpha_{r10} = 7,82\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{10}}\mathbf{= 5\ 713,55\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
t11 = 70 C $\alpha_{r11} = 7,82\ \frac{W}{m^{2}K}$ $\mathbf{q}_{\mathbf{11}}\mathbf{= 5\ 713,55\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{2}}\mathbf{h}}$
$\alpha_{k} = 26,68\ \frac{W}{m^{2}K}$
tot = 24 C
Straty ciepła do otoczenia:
$$Q_{7}^{r} = \frac{1,1 \bullet E \bullet t_{c}}{1000 \bullet M_{\text{WK}}^{r}} \bullet \sum_{i}^{}{F_{i} \bullet \left( q_{i} - q_{\text{rs}} \right)}\text{\ \ }\left\lbrack \frac{\text{kJ}}{\text{Mg}} \right\rbrack$$
E = 1000 kg (masa wsadu)
tc = 19, 3 h
MWKr = 28, 72 Mg
$$\mathbf{q}_{\mathbf{\text{rs}}} = 320\ \frac{W}{m^{2}}$$
$$\sum_{i}^{}{F_{i} \bullet \left( q_{i} - q_{\text{rs}} \right) = 618\ 865,2\ \frac{\text{kJ}}{\text{kg\ h}}}$$
$$\mathbf{Q}_{\mathbf{7}}^{\mathbf{r}}\mathbf{= 457\ 542,2\ \ }\frac{\mathbf{\text{kJ}}}{\mathbf{\text{Mg}}}$$
Entalpia fizyczna spalin
Objętość spalin węglowych:
$$V_{s} = \frac{\left( \left\lbrack \text{CO}_{2} \right\rbrack + \left\lbrack \text{CO} \right\rbrack + \left\lbrack H_{2} \right\rbrack + 3 \bullet \left\lbrack \text{CH}_{4} \right\rbrack + \left\lbrack N_{2} \right\rbrack + 4 \bullet \left\lbrack C_{n}H_{m} \right\rbrack \right)}{100} + V_{a} - V_{O} + W_{p}*V_{a}{+ W}_{\text{g\ }}\left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$$
[CO2] = 2,6 %
[CO] = 6,0 %
[CH4] = 26,3 %
[H2] = 58,5 %
[N2] = 3,2 %
[CnHm] = 2,8 %
$V_{a} = 4,94\ \frac{m^{3}}{m^{3}}$
$V_{O} = 0,927\ \frac{m^{3}}{m^{3}}$
$W_{p} = 0,031\ \frac{m^{3}}{m^{3}}$
$W_{g} = 0,127\ \frac{m^{3}}{m^{3}}$
$\mathbf{V}_{\mathbf{s}}\mathbf{= 5,90\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Objętość pary wodnej:
$$V_{H_{2}O} = \frac{\left( \left\lbrack H_{2} \right\rbrack + 2 \bullet \left\lbrack CH_{4} \right\rbrack + 2 \bullet \left\lbrack C_{n}H_{m} \right\rbrack \right)}{100} + W_{p} \bullet V_{a} + W_{g}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$$
[H2] = 58,5 %
[CH4] = 26,3 %
[CnHm] = 2,8 %
$W_{p} = 0,031\ \frac{m^{3}}{m^{3}}$
$V_{a} = 4,94\ \frac{m^{3}}{m^{3}}$
$W_{g} = 0,127\ \frac{m^{3}}{m^{3}}$
$$\mathbf{V}_{\mathbf{H}_{\mathbf{2}}\mathbf{O}}\mathbf{= 1,45\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$$
Objętość dwutlenku węgla:
[CO2] = 2,6 %
[CO] = 6,0 %
[CH4] = 26,3 %
[CnHm] = 2,8 % $V_{CO_{2}} = \frac{\left( \left\lbrack \text{CO}_{2} \right\rbrack + \left\lbrack \text{CO} \right\rbrack + \left\lbrack \text{CH}_{4} \right\rbrack + 2 \bullet \left\lbrack C_{n}H_{m} \right\rbrack \right)}{100}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{V}_{\mathbf{C}\mathbf{O}_{\mathbf{2}}}\mathbf{= 0,41\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Objętość azotu:
[N2] = 3,2 %
$V_{a} = 4,94\ \frac{m^{3}}{m^{3}}$ $V_{N_{2}} = \frac{\left\lbrack N_{2} \right\rbrack}{100} + 0,79 \bullet V_{a}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{V}_{\mathbf{N}_{\mathbf{2}}}\mathbf{= 3,93\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Objętość tlenu:
$V_{a} = 4,94\ \frac{m^{3}}{m^{3}}$
$V_{O} = 0,927\ \frac{m^{3}}{m^{3}}$ $V_{O_{2}} = 0,21 \bullet V_{a} - V_{O}\ \left\lbrack \frac{m^{3}}{m^{3}} \right\rbrack$ $\mathbf{V}_{\mathbf{O}_{\mathbf{2}}}\mathbf{= 0,11\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{m}^{\mathbf{3}}}$
Udział pary wodnej w spalinach:
$V_{H_{2}O} = 1,45\ \frac{m^{3}}{m^{3}}$
$V_{s} = 5,90\ \frac{m^{3}}{m^{3}}$ $u_{H_{2}O} = \frac{V_{H_{2}O}}{V_{s}} \bullet 100\ \left\lbrack \% \right\rbrack$ uH2O=24, 54 %
Udział dwutlenku węgla w spalinach:
$V_{CO_{2}} = 0,41\ \frac{m^{3}}{m^{3}}$
$V_{s} = 5,90\ \frac{m^{3}}{m^{3}}$ $u_{\text{CO}_{2}} = \frac{V_{\text{CO}_{2}}}{V_{s}} \bullet 100\ \left\lbrack \% \right\rbrack$ uCO2=6, 87 %
Udział azotu w spalinach:
$V_{N_{2}} = 3,93\ \frac{m^{3}}{m^{3}}$
$V_{s} = 5,90\ \frac{m^{3}}{m^{3}}$ $u_{N_{2}} = \frac{V_{N_{2}}}{V_{s}} \bullet 100\ \left\lbrack \% \right\rbrack$ uN2=66, 71 %
Udział tlenu w spalinach:
$V_{O_{2}} = 0,11\ \frac{m^{3}}{m^{3}}$
$V_{s} = 5,90\ \frac{m^{3}}{m^{3}}$ $u_{O_{2}} = \frac{V_{O_{2}}}{V_{s}} \bullet 100\ \left\lbrack \% \right\rbrack$ uO2=1, 88 %
Średnie ciepło właściwe spalin w zakresie temperatur 0-tsp
uH2O = 24, 54 %
uCO2 = 6, 87 %
uN2 = 66, 71 %
uO2 = 1, 88 %
$c_{H_{2}O}^{0 - t_{350}} = 1,5475\ \frac{\text{kJ}}{m^{3}K}$
$c_{\text{CO}_{2}}^{0 - t_{350}} = 1,8985\ \frac{\text{kJ}}{m^{3}K}$
$c_{N_{2}}^{0 - t_{350}} = 1,3145\ \frac{\text{kJ}}{m^{3}K}$
$c_{O_{2}}^{0 - t_{350}} = 1,3695\ \frac{\text{kJ}}{m^{3}K}$ $c_{S}^{0 - t_{\text{sp}}} = \frac{\sum_{i}^{}u_{i} \bullet c_{\text{si}}^{0 - t_{\text{sp}}}}{100}\ \left\lbrack \frac{\text{kJ}}{m^{3}K} \right\rbrack$ $\mathbf{c}_{\mathbf{S}}^{\mathbf{0 -}\mathbf{t}_{\mathbf{\text{sp}}}}\mathbf{= 1,413\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}\mathbf{K}}$
$V_{s} = 5,90\ \frac{m^{3}}{m^{3}}$
$c_{S}^{0 - t_{\text{sp}}} = 1,413\ \frac{\text{kJ}}{m^{3}K}$
tsp = 350 C $Q_{5}^{'r} = V_{s} \bullet c_{S}^{0 - t_{\text{sp}}} \bullet t_{\text{sp}}\ \left\lbrack \frac{\text{kJ}}{m^{3}} \right\rbrack$ $\mathbf{Q}_{\mathbf{5}}^{\mathbf{'r}}\mathbf{= 2}\mathbf{\ }\mathbf{916\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
Straty ciepła na skutek niezupełnego spalania gazu opałowego pominięto zakładając spalanie zupełne i całkowite.
Wyznaczanie ilości gazu do skoksowania 1 Mg mieszanki węglowej „Vx”
Przychód:
$Q_{\text{ig}} = 17909,45\frac{\text{kJ}}{m^{3}}$
$Q_{2}^{'p} = 95,15\frac{\text{kJ}}{m^{3}}$
$Q_{3}^{'p} = 189,39\ \frac{\text{kJ}}{m^{3}}$
$Q_{4}^{p} = 29\ 193,6\frac{\text{kJ}}{\text{Mg}}$ P = Qig • VX • +Q2′p • VX + Q3′p • VX + Q4p
Rozchód:
$Q_{1}^{r} = 1\ 133\ 540\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{2}^{r} = 388799,4\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{3}^{r} = 108\ 139,8\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{4}^{r} = 365\ 258,7\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{5}^{'r} = 2\ 916\ \frac{\text{kJ}}{\text{Mg}}$
$Q_{7}^{r} = 457\ 542,2\ \ \frac{\text{kJ}}{\text{Mg}}\backslash t$ R = Q1r + Q2r + Q3r + Q4r + Q5′p • VX + Q7r
Przyjmując, że P=R obliczamy VX
$V_{X} = \frac{Q_{1}^{r} + Q_{2}^{r} + Q_{3}^{r} + Q_{4}^{r} - Q_{4}^{P} + Q_{7}^{r}}{Q_{\text{ig}} + Q_{2}^{'p} + Q_{3}^{'p} - Q_{5}^{'r}}\ \left\lbrack \frac{m^{3}}{\text{Mg}} \right\rbrack$ $\mathbf{V}_{\mathbf{X}}\mathbf{= 158,67\ }\frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{\text{Mg}}}$
Entalpie uwzględniające ilość potrzebnego gazu koksowniczego:
$Q_{\text{ig}} = 17909,45\frac{\text{kJ}}{m^{3}}$ $\mathbf{Q}_{\mathbf{1}}^{\mathbf{p}}\mathbf{= 2\ 841\ 607\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
$Q_{2}^{'p} = 95,15\frac{\text{kJ}}{m^{3}}$ $\mathbf{Q}_{\mathbf{2}}^{\mathbf{p}}\mathbf{= 15\ 097,37}\mathbf{\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
$Q_{3}^{'p} = 189,39\ \frac{\text{kJ}}{m^{3}}$ $\mathbf{Q}_{\mathbf{3}}^{\mathbf{p}}\mathbf{= 30\ 049,25\ \ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
$Q_{5}^{'r} = 2\ 916\ \frac{\text{kJ}}{m^{3}}$ $\mathbf{Q}_{\mathbf{5}}^{\mathbf{r}}\mathbf{= 462\ 667,3\ }\frac{\mathbf{\text{kJ}}}{\mathbf{m}^{\mathbf{3}}}$
$V_{X} = 158,67\ \frac{m^{3}}{\text{Mg}}$
Wskaźnik sprawności cieplnej baterii:
$\sum_{i}^{}Q_{i}^{r} = 2\ 915\ 947\ \frac{\text{kJ}}{\text{Mg}}\ Q_{i}^{r}$
$Q_{5}^{r} = 462\ 667,3\ \frac{\text{kJ}}{m^{3}}$
$Q_{7}^{r} = 457\ 542,2\ \ \frac{\text{kJ}}{\text{Mg}}$ $\eta = \frac{\sum_{i}^{}{Q_{i}^{r} - \left( Q_{5}^{r} + Q_{7}^{r} \right)}}{\sum_{i}^{}Q_{i}^{r}} \bullet 100\ \lbrack\%\rbrack$ η = 68, 44 %
Wskaźnik do przeliczania bilansów z odniesienia do 1 Mg mieszanki na odniesienie do baterii koksowniczej i 1 roku:
MWKr = 28, 72 Mg
N = 47
tc = 19, 3 h $\xi = M_{\text{WK}}^{r} \bullet N \bullet \frac{365 \bullet 24}{t_{c}}\ \left\lbrack - \right\rbrack$ ξ=612 575, 4
Tab. 1 Bilans materiałowy procesu koksowania dla jednej baterii koksowniczej w okresie 1 roku. |
---|
Przychód |
Składnik |
|
|
Suma: |
Tab. 2 Bilans cieplny procesu koksowania dla jednej baterii koksowniczej w okresie 1 roku. |
---|
Przychód |
Składnik |
|
|
|
|
Suma: |