Bilans cieplny i ciepło właściwe –
obliczenia do doświadczeń z prezentacji
Obliczenia do doświadczenia nr 3
Dane:
m1 = 200g m2 = 200g $C_{w_{w}} = 4200\frac{J}{kg \bullet K}\backslash nt_{1} = 50\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{\ \ }\ t_{2} = 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{\ \ }t_{K} = 30\ $
Szukane:
Q1 = ? Q2 = ?
Obliczenia:
$${Q = \ C_{w}\ \bullet m\ \bullet t\backslash n}{Q_{1} = \ C_{w_{w}}\ \bullet m_{1}\ \bullet (t_{1} - \ t_{K})\backslash n}{Q_{1} = \ 4200\frac{J}{kg \bullet K}\ \bullet 200g \bullet \left( 50 - \ 30 \right)\backslash n}{Q_{1} = \ \frac{4200\text{\ J}}{\text{kg} \bullet K}\ \bullet \frac{2\ \text{kg}}{10} \bullet 20\backslash n}{Q_{1} = \ \ 16800\ J\ }{Q_{1} = \ 16,\ 8\ kJ\backslash n}$$
$${Q_{2} = \ C_{w_{w}}\ \bullet m_{2}\ \bullet (t_{K} - \ t_{2})\backslash n}{Q_{2} = \ 4200\frac{J}{kg \bullet K}\ \bullet 200g \bullet \left( 30 - \ 10 \right)\backslash n}{Q_{2} = \ \frac{4200\text{\ J}}{\text{kg} \bullet K}\ \bullet \frac{2\ \text{kg}}{10} \bullet 20\backslash n}{Q_{2} = \ 16800\ J}$$
Rozwiązanie:
Q1 = 16, 8 kJ Q2 = 16, 8 kJ Q1 = Q2
Obliczenia do doświadczenia nr 5
Dane:
m1 = 200g m2 = 50g $C_{w_{1}} = 4200\frac{J}{kg \bullet K}\backslash nt_{1} = 100\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t_{2} = 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t_{K} = 96\ $
Szukane:
Cw2 = ?
Obliczenia:
Q = Cw • m • t ∖ nQ1 = Cw1 • m1 • (t1− tK) ∖ nQ2 = Cw2 • m2 • (tK− t2) ∖ nQ1 = Q2
Cw1 • m1 • (t1− tK) = Cw2 • m2 • (tK− t2)
$$C_{w_{2}} = \ \frac{1680\ J}{4,\ 3\ kg \bullet K\ }$$
Rozwiązanie:
$C_{w_{2}} \approx 391\ \frac{J}{kg\ \bullet K}$
Takie ciepło właściwe posiada cynk.