Wyrównanie kątów i długości pomierzonych oraz obliczenie błędów
Wyrównanie stacyjne
S i |
Ksi | Ki | [cc] | ∑vi | ∑vi2 |
---|---|---|---|---|---|
1 | 2 | 1 | 2 | ||
286p | 0.0000 | 0.0000 | 0.0000 | 4.7 | -4.7 |
283 | 84.2232 | 84.2236 | 84.22340 | 6.7 | -6.7 |
282 | 85.4416 | 85.4404 | 85.44100 | -1.3 | 1.3 |
B1 | 297.9320 | 297.9292 | 297.93060 | -9.3 | 9.3 |
B2 | 299.0291 | 299.0280 | 299.02855 | -0.8 | 0.8 |
Ks | 153.32518 | 153.32424 | 153.32471 153.32471 |
10.1 | -10.1 |
δs=K-Ki | -0.00047 | 0.00047 | 68.67 | 68.67 |
$m_{0} = \ \pm \sqrt{\frac{\sum({V_{\text{si}})}^{2}}{(n - 1)(s - 1)}} =$ 5.86
$m_{k} = \ \pm \ \frac{m_{0}}{\sqrt{2}} =$ 4.14
Wyrównanie metodą par spostrzeżeń
α1=39,5386
α2=39,9532
$d_{1} = \propto_{1}^{\text{II}} - \propto_{1}^{I} =$ 39.5374 - 39.5398= -0,0024
$d_{2} = \propto_{2}^{\text{II}} - \propto_{2}^{I} =$ 39.9536 – 39.9529 = +0,0007
$$m_{\propto} = \pm \frac{1}{2}\sqrt{\frac{\sum{d_{i}}^{2}}{n}}$$
$m_{\propto} = \ \pm \frac{1}{2}\sqrt{\frac{{( - 24)}^{2} + 7^{2}}{2}}$ = ± 8.8 cc
Błąd standardowy dalmierza
286pp-B1 = 127.116
B1–286pp = 127.117
$\overset{\overline{}}{b_{1}}$ = 127.1165 [m]
$$m_{\overset{\overline{}}{b_{1}}} = \ \pm \left( 5mm + 0.6mm \right) = \pm 5.6mm$$
b1 = 127.1165m ± 5.6mm
286pp-B2 = 127.038
B2–286pp = 127.035
$\overset{\overline{}}{b_{2}}$ = 127.0365 [m]
$m_{\overset{\overline{}}{b_{2}}} = \ \pm \left( 5\text{mm} + 0.6\text{mm} \right) = \pm 5.6\text{mm}$
b2 = 127.0365m ± 5.6mm
Zestawienie współrzędnych z błędami
Xpp= 5404750.204
Ypp= 4554090.279
mb′=
mφR=
mγR=
mApp′=
mXp′=
mYp′=
mp′=
Xpp’
Ypp’