τmax==$\ \frac{\text{Ms}}{\text{Wo}}$<ks
Rs=0,7*Rm
Ks=$\ \frac{\text{Rs}}{n}$
Ms=9550N/n
Wo=π(D4-d4)/16D
d1=$\sqrt[3]{\frac{16Ms}{\pi*f*ks}}$ [mm]
ϕ=$\frac{Ms*l}{G*Jo}$ < ϕdop
ΣM(x)=0 => ME+M4+M3-M2+M1=0 =>ME=-3kNm
MS1=M1 MS2=M1-M2 MS3=M1-M2+M3
MS4=M1-M2+M3+M4
τ1=$\frac{Ms1}{Wo1}$ τ2=$\frac{Ms2}{Wo2}\ $ τ3=$\frac{Ms3}{Wo2}\ $ τ4=$\frac{Ms4}{Wo3}$
WO1=$\frac{\pi(\text{dz}^{4} - \text{dw}^{4})}{16dz}$ WO2=$\frac{\pi{d2}^{3}}{16}$ WO3=$\frac{\pi{d1}^{3}}{16}$
ϕΑΒ=$\frac{Ms*2a}{G*Jo1}$ ϕΒC=$\frac{Ms*3a}{G*Jo2}\ $ ϕCD=$\frac{Ms*a}{G*Jo2}$ ϕDE=$\frac{Ms*4a}{G*Jo3}$
JO1=$\frac{\pi(\text{dz}^{4} - \text{dw}^{4})}{32}$ JO2=$\frac{\pi{d2}^{4}}{32}$ JO3=$\frac{\pi{d1}^{4}}{32}$
ϕΕC = ϕDE + ϕCD ϕΕB = ϕEC + ϕCB ϕΕA = ϕEB + ϕBA
D=25δ W1=2Fo*δmin=2*$\frac{\text{πD}}{4}^{2}$*δ
J1=$\frac{{4Fo}^{2}}{\oint_{}^{}\frac{\text{ds}}{\delta}}$=$\frac{4*{(\frac{\pi D^{2}}{4})}^{2}}{\frac{1}{\delta}*\pi D}$=$\frac{\pi D^{3}*\delta}{4}$
W2=$\frac{J_{2}}{\text{δmax}}$=$\frac{\pi\text{Dδ}^{3}}{3\delta}$=$\frac{\pi\text{Dδ}^{2}}{3}$
J2=κ*$\frac{1}{3}$Σδi3bi=$\frac{1}{3}$bi*δ3=$\frac{\pi\text{Dδ}^{3}}{3}$
k1=$\frac{W1}{W2}$=$\frac{\pi D^{2}\delta*3}{2*\pi\text{Dδ}^{2}}$=$\frac{3D}{2\delta}$=$\frac{3*25\delta}{2\delta}$=37,5razy
k2=$\frac{J1}{J2}$=$\frac{\pi D^{3}\delta*3}{4*\pi\text{Dδ}^{3}}$=$\frac{3D^{2}}{{4\delta}^{2}}$=$\frac{3*25^{2}\delta^{2}}{4\delta^{2}}$=486,75razy
J=κ*$\frac{1}{3}$Σδi3bi=1,2$\frac{1}{3}$[2*90*11,33+177,4*7,53]=
133825mm4 W=$\frac{J}{\text{δmax}}$=$\frac{133825}{11,3}$=11843mm3
τmax==$\ \frac{\text{Ms}}{W}$=$\frac{400*10^{3}}{11843}$≈33,8MPa
ϕ=$\frac{\text{Ms}*l}{G*J}$=$\frac{400*10^{3}*10^{3}}{8**10^{4}*133825}$=0,0374rad=>2008’
F=$\frac{\pi d^{2}}{16}$ =>d=$\sqrt{\frac{4F}{\pi}}$=$\sqrt{\frac{4*3350}{\pi}}$=65,3mm
WO2=$\frac{\pi d^{3}}{16}$ JO2=$\frac{\pi d^{4}}{32}$
τ1max==$\ \frac{\text{Ms}}{\text{Wo}}$=$\frac{400*10^{3}*16}{\pi*{65,3}^{3}}$=7,3MPa
ϕ1=$\frac{\text{Ms}*l}{G*\text{Jo}}$=$\frac{400*10^{3}*10^{3}*32}{8**10^{4}*\pi*{65,3}^{4}}$=0,0028rad=>0o10’
k1=$\frac{\text{Tmax}}{T1}$≈4,63 razy wytrzymalszy
k2=$\frac{\varphi}{\varphi 1}$=$\frac{2^{o}08'}{10'}$=13,6 razy sztywniejszy
1-1zerwanie śruby
σr=$\frac{N}{\text{Fs}}$ ≤kr kr=$\frac{\text{Rm}}{n}$ Fs=$\frac{\pi\text{dr}^{2}}{4}$
$\frac{4P}{\pi\text{dr}^{2}}$ <kr => dr>$\sqrt{\frac{4P}{\text{πkr}}}$
2-2 ścięcie łba śruby
τ1=$\frac{T}{F}$ <kt F=πDh Kt=0,6kr
$\frac{P}{\text{πDh}}$ <kt => h>$\frac{P}{\text{πDkt}}$
3-3 przekroczenie nacisków dopuszczalnych
P=$\frac{T}{\text{Fn}}$ <pdop pdop=2kc kc=$\frac{\text{Rc}}{n}$
Fn=$\frac{\pi(D^{2} - d^{2})}{4}$
$\frac{4P}{\pi(D^{2} - d^{2})}$ <pdop=>D>$\sqrt{\frac{4P}{\pi\left( - d^{2} \right)*\text{pdop}}}$
i>$\frac{4P}{\pi d^{2}\text{kt}}$ t=2,2do do=d+1 t=2,2do
e1=1,2do bk=t+2e1 e=1,6do a=2do
l=2a+2e σ=$\frac{P}{\text{Fo}}$ <kr Fo=g*b-2$\frac{\pi\text{do}^{2}}{4}$
$\frac{P}{b*g - \frac{\text{πdo}^{2}}{2}}$ <kr=>b=$\frac{P}{kr*g - \frac{\text{πdo}^{2}}{2}}$
Po=$\frac{P}{n}$ M=P*L=30(0,08+0,18)=7,8kNm
Pi=l*ri M=$\sum_{1}^{n}{\text{Pi}*\text{ri} = k\sum_{1}^{n}\text{ri}^{2}} = \frac{\text{Pi}}{\text{ri}}\sum_{1}^{n}\text{ri}^{2}$
Pi=$\frac{\text{Mri}}{\sum_{1}^{n}\text{ri}^{2}}$
ρ12= ρ32=ρ42=ρ62=802+1002=16400mm2
ρ22= ρ52=802=6400mm2
$\sum_{1}^{6}\text{ri}^{2}$=4*16400+2*6400=78400mm2
P1=P3=P4=P6=$\frac{7,8*10^{6}\sqrt{16400}}{78400}$=12741N
P2=P5=$\frac{7,8*10^{6}*80}{78400}$=7959N
T1=$\sqrt{P_{1}^{2} + P_{0}^{2} + 2\text{Po}P_{1}\text{sinα}}$=
$\sqrt{12741^{2} + 5000^{2} + 2*12741*5000*0,625}$=16339N
T2=Po+P2=5000+7959=12959N
τ=$\frac{4T_{1}}{\pi d^{2}}$ <kt => d>$\sqrt{\frac{4T_{1}}{\text{πkt}}}$=$\sqrt{\frac{4*16339}{\pi*70}}$=17,2
Przyjmujemy d=18mm
τ==$\ \frac{P}{\text{Fs}}$<kts Fs=2(l1+l2)*gs*0,7
$\frac{P}{2*\left( l1 + l2 \right)gs*0,7}$ <kts Kts=0,65kr
(1)2(l1+l2)=$\ \frac{P}{gs*0,7*\text{kts}}$ $\frac{l1}{l2}$ =$\frac{e2}{e1}$ (2)
L1=l2$\frac{e2}{e1}$ Wst. do (1) 2$(\frac{l2e2}{e1} + l2)$
τ==$\ \frac{P}{\text{Fs}}$<kt $\frac{4P}{\pi d^{2}}$ <kt=>d=$\sqrt{\frac{4P}{\text{πkt}}}$
Ms=Mo=P*$\frac{D}{2}$ 2Mo=P*D
P=$\frac{2Mo}{D}$=$\frac{2*6800000}{215}$=63225N
Dla i=6 P=$\frac{63225}{6}$=10542,5
D=$\sqrt{\frac{4*10542,5}{\pi*60}}$≈15mm
Fs=B*l τ==$\ \frac{P}{\text{Fs}}$<kt $\frac{P}{b*l}$ <kt=>l> $\frac{P}{b*\text{kt}}$
l> $\frac{24000}{8*80}$=37,5 Mo= $\frac{P*d}{2}$=>P= $\frac{2Mo}{d}$=24kN
P<F*kr=g*b*kr=30*60*120=216000N
P<F*kr=(D-d)g*kr=60*30*120=216000N
P<F*kd=g*d*kd=30*40*180=216000
P<F*kt=2$\frac{\pi d^{2}}{4}$kt=2$\frac{\pi 40^{2}}{4}$*70=175930
Decyduje najmniejsza wartość siły P
ΣM(x)=0=>P1*$\frac{D1}{2}$+P2*$\frac{D2}{2}$=0=>P2=…
Ms= P1*$\frac{D1}{2}$= P2*$\frac{D2}{2}$
σz1=$\sqrt{\sigma{g_{1}}^{2} + 3{\tau_{1}}^{2}}$ <kg WO1=$\frac{\pi{d_{1}}^{3}}{16}$
τ1=$\frac{\text{Ms}}{Wo_{1}}$ <ks=>d1<$\sqrt{\frac{16\text{Ms}}{\text{πks}}}$
σz2=$\sqrt{\sigma{g_{A}}^{2} + 3{\tau_{A}}^{2}}$ <kg WZ2=$\frac{\pi{d_{2}}^{3}}{32}$
σgA=$\frac{\text{Mg}_{A}}{\text{Wz}2}$=$\frac{\text{Ra}*a*32}{\pi{d_{2}}^{3}}$ WO2=$\frac{\pi{d_{2}}^{3}}{16}$
τΑ=$\frac{\text{Ms}}{Wo_{2}}$ σz2=>d3
σz3=$\sqrt{\sigma{g_{3}}^{2} + 3{\tau_{3}}^{2}}$ <kg WZ3=$\frac{\pi{d_{3}}^{3}}{32}$
σg3=$\frac{\text{Mg}_{3}}{Wz3}$=$\frac{RB*3a*32}{\pi{d_{3}}^{3}}$ WO3=$\frac{\pi{d_{3}}^{3}}{16}$
τ3=$\frac{\text{Ms}}{Wo_{3}}$ σz3=>d3
WZ4=$\frac{\pi{d_{4}}^{3}}{32}$
σg4=$\frac{\text{Mg}_{3}}{Wz4}$<kg => d4<$\sqrt{\frac{32\text{Mg}3}{\text{πkg}}}$
ΣM(x)=0=>P*r-Q*2r=>Q=$\frac{1}{2}$P Ms=P*r=Q*2r
Μg1=$\sqrt{M{g_{z1}}^{2} + {\text{Mg}_{y1}}^{2}}$=$\sqrt{{(\frac{1}{4}pl)}^{2} + {(\frac{3}{8}pl)}^{2}}$
Μg2=$\sqrt{M{g_{z2}}^{2} + {\text{Mg}_{y2}}^{2}}$=$\sqrt{{(\frac{3}{4}pl)}^{2} + {(\frac{1}{8}pl)}^{2}}$
Μz1=$\sqrt{M{g_{1}}^{2} + {0,75\text{Ms}}^{2}}$
Μz2=$\sqrt{M{g_{2}}^{2} + {0,75\text{Ms}}^{2}}$
σz=$\frac{\text{Mz}}{\text{Wz}}$ <kg $\frac{32\text{Mz}_{2}}{\pi d^{3}}$<kg = d>$\sqrt{\frac{32\text{Mz}2}{\text{πkg}}}$
Jz=$\frac{30*200^{3}}{12}$+30*200(a1)2+$\frac{120*40^{3}}{12}$+120*40(a2)2
σA=$\frac{\text{Mg}}{\text{Iz}}$*ya=$\frac{Q*L}{\text{Iz}}$*ya τΑ=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=0
σB=$\frac{Q*L}{\text{Iz}}$*yb τΒ=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=$\frac{\frac{Q}{2}*120*40*a2}{\text{Iz}*30}$
σC =$\frac{Q*L}{\text{Iz}}$*0=0 τC=$\frac{\frac{Q}{2}*(120*40*a2 + 30*\text{yb}*\frac{\text{yb}}{2})}{\text{Iz}*30}$
σD=$\frac{Q*L}{\text{Iz}}$*yo τD=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=0
σzA=$\sqrt{{\sigma_{A}}^{2} + 3{\tau_{A}}^{2}}$ σzB=$\sqrt{{\sigma_{B}}^{2} + 3{\tau_{B}}^{2}}$
σzC=$\sqrt{{\sigma_{C}}^{2} + 3{\tau_{C}}^{2}}$ σzD=$\sqrt{{\sigma_{D}}^{2} + 3{\tau_{D}}^{2}}$
σzmax=kg=kr Kt=0,6kr(kg) τS= $\frac{Q}{\text{Fs}}$ <kt=>gs
Fs=ls*gs*0,7 Ls=2(2l+3a)
Kw=β*kc
σz=σc+σg<kr(kc) Mg=P*e
E=$\frac{4r}{3\pi}$ Wz1=$\frac{\text{Iz}}{r - e}$
Iz=$\frac{\pi d^{4}}{128}$dla koła Iz=$\frac{a^{4}}{72}$dla kwadratu
σzr=-$\frac{P}{F}$+$\frac{\text{Mg}}{\text{Wz}1}$ <kr=>P1<…
Wz2= $\frac{\text{Iz}}{e}$
σzc=-$\frac{P}{F}$-$\frac{\text{Mg}}{\text{Wz}2}$ <kc=>P2<…
S=$\frac{\text{Lw}}{i}$ i=Jmin/Fmin Sgr=π$\sqrt{\frac{E}{\text{Rs}}}$
S<Sgr=>wzór Tetmajera Jaśińskiego=>P3
σ=a-b*s=>σ=Re-$\frac{\text{Re} - \text{Rs}}{\text{Sgr}}$ σ=$\frac{P}{F}$ <kw
S>Sgr =>Wzór Eulera=>Pkr=$\frac{\pi^{2}*E*\text{Jmin}}{\text{Lw}^{2}}$
σkr=$\frac{\text{Pkr}}{F}$