ściąga wydymka koło 2

τmax==$\ \frac{\text{Ms}}{\text{Wo}}$<ks

Rs=0,7*Rm

Ks=$\ \frac{\text{Rs}}{n}$

Ms=9550N/n

Wo=π(D4-d4)/16D

d1=$\sqrt[3]{\frac{16Ms}{\pi*f*ks}}$ [mm]

ϕ=$\frac{Ms*l}{G*Jo}$ < ϕdop

ΣM(x)=0 => ME+M4+M3-M2+M1=0 =>ME=-3kNm

MS1=M1 MS2=M1-M2 MS3=M1-M2+M3

MS4=M1-M2+M3+M4

τ1=$\frac{Ms1}{Wo1}$ τ2=$\frac{Ms2}{Wo2}\ $ τ3=$\frac{Ms3}{Wo2}\ $ τ4=$\frac{Ms4}{Wo3}$

WO1=$\frac{\pi(\text{dz}^{4} - \text{dw}^{4})}{16dz}$ WO2=$\frac{\pi{d2}^{3}}{16}$ WO3=$\frac{\pi{d1}^{3}}{16}$

ϕΑΒ=$\frac{Ms*2a}{G*Jo1}$ ϕΒC=$\frac{Ms*3a}{G*Jo2}\ $ ϕCD=$\frac{Ms*a}{G*Jo2}$ ϕDE=$\frac{Ms*4a}{G*Jo3}$

JO1=$\frac{\pi(\text{dz}^{4} - \text{dw}^{4})}{32}$ JO2=$\frac{\pi{d2}^{4}}{32}$ JO3=$\frac{\pi{d1}^{4}}{32}$

ϕΕC = ϕDE + ϕCD ϕΕB = ϕEC + ϕCB ϕΕA = ϕEB + ϕBA

D=25δ W1=2Fo*δmin=2*$\frac{\text{πD}}{4}^{2}$

J1=$\frac{{4Fo}^{2}}{\oint_{}^{}\frac{\text{ds}}{\delta}}$=$\frac{4*{(\frac{\pi D^{2}}{4})}^{2}}{\frac{1}{\delta}*\pi D}$=$\frac{\pi D^{3}*\delta}{4}$

W2=$\frac{J_{2}}{\text{δmax}}$=$\frac{\pi\text{Dδ}^{3}}{3\delta}$=$\frac{\pi\text{Dδ}^{2}}{3}$

J2=κ*$\frac{1}{3}$Σδi3bi=$\frac{1}{3}$bi*δ3=$\frac{\pi\text{Dδ}^{3}}{3}$

k1=$\frac{W1}{W2}$=$\frac{\pi D^{2}\delta*3}{2*\pi\text{Dδ}^{2}}$=$\frac{3D}{2\delta}$=$\frac{3*25\delta}{2\delta}$=37,5razy

k2=$\frac{J1}{J2}$=$\frac{\pi D^{3}\delta*3}{4*\pi\text{Dδ}^{3}}$=$\frac{3D^{2}}{{4\delta}^{2}}$=$\frac{3*25^{2}\delta^{2}}{4\delta^{2}}$=486,75razy

J=κ*$\frac{1}{3}$Σδi3bi=1,2$\frac{1}{3}$[2*90*11,33+177,4*7,53]=

133825mm4 W=$\frac{J}{\text{δmax}}$=$\frac{133825}{11,3}$=11843mm3

τmax==$\ \frac{\text{Ms}}{W}$=$\frac{400*10^{3}}{11843}$≈33,8MPa

ϕ=$\frac{\text{Ms}*l}{G*J}$=$\frac{400*10^{3}*10^{3}}{8**10^{4}*133825}$=0,0374rad=>2008’

F=$\frac{\pi d^{2}}{16}$ =>d=$\sqrt{\frac{4F}{\pi}}$=$\sqrt{\frac{4*3350}{\pi}}$=65,3mm

WO2=$\frac{\pi d^{3}}{16}$ JO2=$\frac{\pi d^{4}}{32}$

τ1max==$\ \frac{\text{Ms}}{\text{Wo}}$=$\frac{400*10^{3}*16}{\pi*{65,3}^{3}}$=7,3MPa

ϕ1=$\frac{\text{Ms}*l}{G*\text{Jo}}$=$\frac{400*10^{3}*10^{3}*32}{8**10^{4}*\pi*{65,3}^{4}}$=0,0028rad=>0o10’

k1=$\frac{\text{Tmax}}{T1}$≈4,63 razy wytrzymalszy

k2=$\frac{\varphi}{\varphi 1}$=$\frac{2^{o}08'}{10'}$=13,6 razy sztywniejszy

1-1zerwanie śruby

σr=$\frac{N}{\text{Fs}}$ ≤kr kr=$\frac{\text{Rm}}{n}$ Fs=$\frac{\pi\text{dr}^{2}}{4}$

$\frac{4P}{\pi\text{dr}^{2}}$ <kr => dr>$\sqrt{\frac{4P}{\text{πkr}}}$

2-2 ścięcie łba śruby

τ1=$\frac{T}{F}$ <kt F=πDh Kt=0,6kr

$\frac{P}{\text{πDh}}$ <kt => h>$\frac{P}{\text{πDkt}}$

3-3 przekroczenie nacisków dopuszczalnych

P=$\frac{T}{\text{Fn}}$ <pdop pdop=2kc kc=$\frac{\text{Rc}}{n}$

Fn=$\frac{\pi(D^{2} - d^{2})}{4}$

$\frac{4P}{\pi(D^{2} - d^{2})}$ <pdop=>D>$\sqrt{\frac{4P}{\pi\left( - d^{2} \right)*\text{pdop}}}$

i>$\frac{4P}{\pi d^{2}\text{kt}}$ t=2,2do do=d+1 t=2,2do

e1=1,2do bk=t+2e1 e=1,6do a=2do

l=2a+2e σ=$\frac{P}{\text{Fo}}$ <kr Fo=g*b-2$\frac{\pi\text{do}^{2}}{4}$

$\frac{P}{b*g - \frac{\text{πdo}^{2}}{2}}$ <kr=>b=$\frac{P}{kr*g - \frac{\text{πdo}^{2}}{2}}$

Po=$\frac{P}{n}$ M=P*L=30(0,08+0,18)=7,8kNm

Pi=l*ri M=$\sum_{1}^{n}{\text{Pi}*\text{ri} = k\sum_{1}^{n}\text{ri}^{2}} = \frac{\text{Pi}}{\text{ri}}\sum_{1}^{n}\text{ri}^{2}$

Pi=$\frac{\text{Mri}}{\sum_{1}^{n}\text{ri}^{2}}$

ρ12= ρ324262=802+1002=16400mm2

ρ22= ρ52=802=6400mm2

$\sum_{1}^{6}\text{ri}^{2}$=4*16400+2*6400=78400mm2

P1=P3=P4=P6=$\frac{7,8*10^{6}\sqrt{16400}}{78400}$=12741N

P2=P5=$\frac{7,8*10^{6}*80}{78400}$=7959N

T1=$\sqrt{P_{1}^{2} + P_{0}^{2} + 2\text{Po}P_{1}\text{sinα}}$=

$\sqrt{12741^{2} + 5000^{2} + 2*12741*5000*0,625}$=16339N

T2=Po+P2=5000+7959=12959N

τ=$\frac{4T_{1}}{\pi d^{2}}$ <kt => d>$\sqrt{\frac{4T_{1}}{\text{πkt}}}$=$\sqrt{\frac{4*16339}{\pi*70}}$=17,2

Przyjmujemy d=18mm

τ==$\ \frac{P}{\text{Fs}}$<kts Fs=2(l1+l2)*gs*0,7

$\frac{P}{2*\left( l1 + l2 \right)gs*0,7}$ <kts Kts=0,65kr

(1)2(l1+l2)=$\ \frac{P}{gs*0,7*\text{kts}}$ $\frac{l1}{l2}$ =$\frac{e2}{e1}$ (2)

L1=l2$\frac{e2}{e1}$ Wst. do (1) 2$(\frac{l2e2}{e1} + l2)$

τ==$\ \frac{P}{\text{Fs}}$<kt $\frac{4P}{\pi d^{2}}$ <kt=>d=$\sqrt{\frac{4P}{\text{πkt}}}$

Ms=Mo=P*$\frac{D}{2}$ 2Mo=P*D

P=$\frac{2Mo}{D}$=$\frac{2*6800000}{215}$=63225N

Dla i=6 P=$\frac{63225}{6}$=10542,5

D=$\sqrt{\frac{4*10542,5}{\pi*60}}$≈15mm

Fs=B*l τ==$\ \frac{P}{\text{Fs}}$<kt $\frac{P}{b*l}$ <kt=>l> $\frac{P}{b*\text{kt}}$

l> $\frac{24000}{8*80}$=37,5 Mo= $\frac{P*d}{2}$=>P= $\frac{2Mo}{d}$=24kN

P<F*kr=g*b*kr=30*60*120=216000N

P<F*kr=(D-d)g*kr=60*30*120=216000N

P<F*kd=g*d*kd=30*40*180=216000

P<F*kt=2$\frac{\pi d^{2}}{4}$kt=2$\frac{\pi 40^{2}}{4}$*70=175930

Decyduje najmniejsza wartość siły P

ΣM(x)=0=>P1*$\frac{D1}{2}$+P2*$\frac{D2}{2}$=0=>P2=…

Ms= P1*$\frac{D1}{2}$= P2*$\frac{D2}{2}$

σz1=$\sqrt{\sigma{g_{1}}^{2} + 3{\tau_{1}}^{2}}$ <kg WO1=$\frac{\pi{d_{1}}^{3}}{16}$

τ1=$\frac{\text{Ms}}{Wo_{1}}$ <ks=>d1<$\sqrt{\frac{16\text{Ms}}{\text{πks}}}$

σz2=$\sqrt{\sigma{g_{A}}^{2} + 3{\tau_{A}}^{2}}$ <kg WZ2=$\frac{\pi{d_{2}}^{3}}{32}$

σgA=$\frac{\text{Mg}_{A}}{\text{Wz}2}$=$\frac{\text{Ra}*a*32}{\pi{d_{2}}^{3}}$ WO2=$\frac{\pi{d_{2}}^{3}}{16}$

τΑ=$\frac{\text{Ms}}{Wo_{2}}$ σz2=>d3

σz3=$\sqrt{\sigma{g_{3}}^{2} + 3{\tau_{3}}^{2}}$ <kg WZ3=$\frac{\pi{d_{3}}^{3}}{32}$

σg3=$\frac{\text{Mg}_{3}}{Wz3}$=$\frac{RB*3a*32}{\pi{d_{3}}^{3}}$ WO3=$\frac{\pi{d_{3}}^{3}}{16}$

τ3=$\frac{\text{Ms}}{Wo_{3}}$ σz3=>d3

WZ4=$\frac{\pi{d_{4}}^{3}}{32}$

σg4=$\frac{\text{Mg}_{3}}{Wz4}$<kg => d4<$\sqrt{\frac{32\text{Mg}3}{\text{πkg}}}$

ΣM(x)=0=>P*r-Q*2r=>Q=$\frac{1}{2}$P Ms=P*r=Q*2r

Μg1=$\sqrt{M{g_{z1}}^{2} + {\text{Mg}_{y1}}^{2}}$=$\sqrt{{(\frac{1}{4}pl)}^{2} + {(\frac{3}{8}pl)}^{2}}$

Μg2=$\sqrt{M{g_{z2}}^{2} + {\text{Mg}_{y2}}^{2}}$=$\sqrt{{(\frac{3}{4}pl)}^{2} + {(\frac{1}{8}pl)}^{2}}$

Μz1=$\sqrt{M{g_{1}}^{2} + {0,75\text{Ms}}^{2}}$

Μz2=$\sqrt{M{g_{2}}^{2} + {0,75\text{Ms}}^{2}}$

σz=$\frac{\text{Mz}}{\text{Wz}}$ <kg $\frac{32\text{Mz}_{2}}{\pi d^{3}}$<kg = d>$\sqrt{\frac{32\text{Mz}2}{\text{πkg}}}$

Jz=$\frac{30*200^{3}}{12}$+30*200(a1)2+$\frac{120*40^{3}}{12}$+120*40(a2)2

σA=$\frac{\text{Mg}}{\text{Iz}}$*ya=$\frac{Q*L}{\text{Iz}}$*ya τΑ=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=0

σB=$\frac{Q*L}{\text{Iz}}$*yb τΒ=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=$\frac{\frac{Q}{2}*120*40*a2}{\text{Iz}*30}$

σC =$\frac{Q*L}{\text{Iz}}$*0=0 τC=$\frac{\frac{Q}{2}*(120*40*a2 + 30*\text{yb}*\frac{\text{yb}}{2})}{\text{Iz}*30}$

σD=$\frac{Q*L}{\text{Iz}}$*yo τD=$\frac{\text{Tmax}*\text{Syz}}{\text{Iz}*b}$=0

σzA=$\sqrt{{\sigma_{A}}^{2} + 3{\tau_{A}}^{2}}$ σzB=$\sqrt{{\sigma_{B}}^{2} + 3{\tau_{B}}^{2}}$

σzC=$\sqrt{{\sigma_{C}}^{2} + 3{\tau_{C}}^{2}}$ σzD=$\sqrt{{\sigma_{D}}^{2} + 3{\tau_{D}}^{2}}$

σzmax=kg=kr Kt=0,6kr(kg) τS= $\frac{Q}{\text{Fs}}$ <kt=>gs

Fs=ls*gs*0,7 Ls=2(2l+3a)

Kw=β*kc

σzcg<kr(kc) Mg=P*e

E=$\frac{4r}{3\pi}$ Wz1=$\frac{\text{Iz}}{r - e}$

Iz=$\frac{\pi d^{4}}{128}$dla koła Iz=$\frac{a^{4}}{72}$dla kwadratu

σzr=-$\frac{P}{F}$+$\frac{\text{Mg}}{\text{Wz}1}$ <kr=>P1<

Wz2= $\frac{\text{Iz}}{e}$

σzc=-$\frac{P}{F}$-$\frac{\text{Mg}}{\text{Wz}2}$ <kc=>P2<

S=$\frac{\text{Lw}}{i}$ i=Jmin/Fmin Sgr=π$\sqrt{\frac{E}{\text{Rs}}}$

S<Sgr=>wzór Tetmajera Jaśińskiego=>P3

σ=a-b*s=>σ=Re-$\frac{\text{Re} - \text{Rs}}{\text{Sgr}}$ σ=$\frac{P}{F}$ <kw

S>Sgr =>Wzór Eulera=>Pkr=$\frac{\pi^{2}*E*\text{Jmin}}{\text{Lw}^{2}}$

σkr=$\frac{\text{Pkr}}{F}$


Wyszukiwarka

Podobne podstrony:
Technologia remediacji druga ściąga na 2 koło całość, Studia, Ochrona środowiska
ściaga na koło z?łego semestru
sciaga fizjo koło 2, 3 SEMESTR WSZYSTKO
ściąga na koło
ściąga analiza kolo 2
ściąga na I koło
ściąga rzym I koło
sciaga na 1 kolo
Ściąga na 1. koło, Notatki AWF, TiM Pływania
sciaga na kolo, Uczelnia
sciaga chemia kolo II, Studia PG, Semestr 02, Chemia, Koło
sciaga, cytologia koło, Rak niedrobnokomórkowy
Sciaga Urzadzanie kolo, AR Poznań - Leśnictwo, Urządzanie lasu
PSO ściąga nr2 koło nr2
sciaga?ukacja zdrowotna 1 kolo
sciaga mieso kolo 1 II Semestr SWIEZOSC
ściąga na kolo egzamin algebra
Sciaga na 2 kolo

więcej podobnych podstron