FUNKCJA WYKŁADNICZA – rozwiązanie zadań
Zadanie 1
$7^{x - 4} = ({\sqrt{7})}^{2 - 3x}$
$$7^{x - 4} = \lbrack{\left( 7 \right)^{\frac{1}{2}}\rbrack}^{2 - 3x}$$
$$7^{x - 4} = 7^{1 - \frac{3}{2}x}$$
funkcja roznowartosciowa
$$x - 4 = 1 - \frac{3}{2}x$$
$$x + \frac{3}{2}x = 5$$
$$2\frac{1}{2}x = 5$$
$$\frac{5}{2}x = 5$$
$$\frac{1}{2}x = 1$$
x = 2
${(\frac{1}{8}\sqrt{2})}^{x} = 8*4^{3 - 2x}$
$$\left( \frac{1}{2^{3}}*2^{\frac{1}{2}} \right)^{x} = 2^{3}*2^{6 - 4x}$$
$${(\frac{2^{\frac{1}{2}}}{2^{3}})}^{x} = 2^{3}*2^{6 - 4x}$$
$${\lbrack({2)}^{\frac{1}{2} - 3}\rbrack}^{x} = 2^{9 - 4x}$$
$$\left( 2 \right)^{- \frac{5}{2}x} = 2^{9 - 4x}$$
funkcja roznowartosciowa
$$- \frac{5}{2}x = 9 - 4x$$
$$- \frac{5}{2}x + 4x = 9$$
$$- 2\frac{1}{2}x + 4x = 9$$
$$1\frac{1}{2}x = 9$$
$$\frac{3}{2}x = 9$$
$$\frac{1}{2}x = 3$$
x = 6
${(\frac{1}{8}*4^{x})}^{x} = 2^{3x - 4}$
(2−3*22x)x = 23x − 4
(2−3 + 2x)x = 23x − 4
funkcja roznowartosciowa
−3x + 2x2 = 3x − 4
2x2 − 6x + 4 = 0
=36 − 32 = 4
$$\sqrt{} = 2$$
$$x_{1} = \frac{6 - 2}{4} = 1$$
$$x_{2} = \frac{6 + 2}{4} = 2$$
75x − 75x − 1 = 6
75x − 75x * 7−1 = 6
75x = t
t > 0
$$t - \frac{1}{7}t = 6$$
$$\frac{6}{7}t = 6$$
$$\frac{1}{7}t = 1$$
t = 7
75x = 7
funkcja roznowartosciowa
5x = 1
$$x = \frac{1}{5}$$
2 * 16x − 17 * 4x + 8 = 0
2 * 42x − 17 * 4x + 8 = 0
t = 4x
t > 0
2t2 − 17t + 8 = 0
=289 − 64 = 225
$$\sqrt{} = 15$$
$$x_{1} = \frac{17 - 15}{4} = \frac{1}{2}$$
$$4^{x} = \frac{1}{2}$$
4x = 2−1
funkcja roznowartosciowa
22x = 2−1
2x = −1
$$x = - \frac{1}{2}$$
$$x_{2} = \frac{17 + 15}{4} = \frac{32}{4} = 8$$
4x = 8
22x = 23
funkcja roznowartosciowa
2x = 3
$$x = \frac{3}{2}$$
4x − 9 * 2x + 8 = 0
22x − 9 * 2x + 8 = 0
2x = t
t > 0
t2 − 9t + 8 = 0
=49
$$\sqrt{} = 7$$
x1 = 1
x2 = 8
funkcja roznowartosciowa
2x = 1 ∨ 2x = 8
2x = 20 ∨ 2x = 23
x = 0 ∨ x = 3
8x − 3 = 9x − 3
$$\frac{8^{x - 3}}{9^{x - 3}} = 1$$
$$({\frac{8}{9})}^{x - 3} = 1$$
$$\left( \frac{8}{9} \right)^{x - 3} = ({\frac{8}{9})}^{0}$$
funkcja roznowartosciowa
x − 3 = 0
x = 3
152x + 4 = 33x * 54x − 4
32x + 4 * 52x + 4 = 33x * 54x − 4 | : 32x + 4 * 52x + 4
$$1 = \frac{3^{3x}*5^{4x - 4}}{3^{2x + 4}*5^{2x + 4}}$$
1 = 33x − 2x − 4 * 54x − 4 − 2x − 4
1 = 3x − 4 * 52x − 8
1 = 3x − 4 * 52(x−4)
1 = 3x − 4 * 25x − 4
(3*25)0 = (3 * 25)x − 4
funkcja roznowartosciowa
x − 4 = 0
x = 4
62x + 4 = 33x * 2x + 8
32x + 4 * 22x + 4 = 33x * 2x + 8 | : 32x + 4 * 22x + 4
$$1 = \frac{3^{3x}*2^{x + 8}}{3^{2x + 4}*2^{2x + 4}}$$
1 = 3x − 4 * 2−x + 4
1 = 3x − 4 * 2−1(x−4)
$$1 = 3^{x - 4}*\frac{1}{2}^{(x - 4)}$$
$$(3{*\frac{1}{2})}^{0} = ({3*\frac{1}{2})}^{x - 4}$$
funkcja roznowartosciowa
x − 4 = 0
x = 4
Zadanie 2
${\sqrt{2 + \sqrt{3}}}^{x} + {\sqrt{2 - \sqrt{3}}}^{x} = 4$
$${\sqrt{\frac{\left( 2 + \sqrt{3} \right)\left( 2 - \sqrt{3} \right)}{(2 - \sqrt{3)}}}}^{x} + {\sqrt{2 - \sqrt{3}}}^{x} = 4$$
$${\sqrt{\frac{4 - 3}{2 - \sqrt{3}}}}^{x} + {\sqrt{2 - \sqrt{3}}}^{x} = 4$$
$${\sqrt{\frac{1}{2 - \sqrt{3}}}}^{x} + {\sqrt{2 - \sqrt{3}}}^{x} = 4$$
$$\frac{1}{{\sqrt{2 - \sqrt{3}}}^{x}} + {\sqrt{2 - \sqrt{3}}}^{x} = 4$$
$${\sqrt{2 - \sqrt{3}}}^{x} = t$$
t > 0
$$\frac{1}{t} + t = 4\ \ |*t$$
1 + t2 − 4t = 0
t2 + 4t + 1 = 0
=16 − 4 = 12
$$\sqrt{} = 2\sqrt{3}$$
$$t_{1} = \frac{4 - 2\sqrt{3}}{2} = 2 - 2\sqrt{3}$$
$${\sqrt{2 - \sqrt{3}}}^{x} = 2 - \sqrt{3}$$
$$\left( 2 - \sqrt{3} \right)^{\frac{1}{2}x} = \left( 2 - \sqrt{3} \right)^{1}$$
funkcja roznowartosciowa
$$\frac{1}{2}x = 1$$
x = 2
$$t_{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}$$
$${\sqrt{2 - \sqrt{3}}}^{x} = 2 + \sqrt{3}$$
$$\left( 2 - \sqrt{3} \right)^{\frac{1}{2}x} = \left( 2 + \sqrt{3} \right)^{1}$$
$$({2 - \sqrt{3})}^{\frac{1}{2}x} = \frac{\left( 2 + \sqrt{3} \right)(2 - \sqrt{3}}{(2 - \sqrt{3})}$$
$$\left( 2 - \sqrt{3} \right)^{\frac{1}{2}x} = \frac{1}{2 - \sqrt{3}}$$
$$\left( 2 - \sqrt{3} \right)^{\frac{1}{2}x} = \left( 2 - \sqrt{3} \right)^{- 1}$$
$$\frac{1}{2}x = - 1$$
x = −2
$\left( \sqrt{3 - 2\sqrt{2}} \right)^{x} + \left( \sqrt{3 + 2\sqrt{2}} \right)^{x} = 6$
$${\sqrt{\frac{1}{3 + 2\sqrt{2}}}}^{x} + {\sqrt{3 + 2\sqrt{2}}}^{x} = 6$$
$$\frac{1}{{\sqrt{3 + 2\sqrt{2}}}^{x}} + {\sqrt{3 + 2\sqrt{2}}}^{x} = 6$$
$$\left( \sqrt{3 + 2\sqrt{2}} \right)^{x} = t$$
t > 0
$$\frac{1}{t} + t = 6\ \ |*t$$
1 + t2 − 6t = 0
t2 − 6t + 1 = 0
=36 − 4 = 32
$$\sqrt{} = 4\sqrt{2}$$
$$t_{1} = \frac{6 - 4\sqrt{2}}{2} = 3 - 2\sqrt{2}$$
$${(\sqrt{3 + 2\sqrt{2}})}^{x} = 3 - 2\sqrt{2}$$
$${(3 + 2\sqrt{2})}^{\frac{1}{2}x} = (3 - 2\sqrt{2})$$
funkcja roznowartosciowa
$$\frac{1}{2}x = 1$$
x = 2
$$t_{2} = \frac{6 + 4\sqrt{2}}{2} = 3 + 2\sqrt{2}$$
$$\left( \sqrt{3 + 2\sqrt{2}} \right)^{x} = 3 + 2\sqrt{2}$$
$$\left( 3 + 2\sqrt{2} \right)^{\frac{1}{2}x}{= \left( 3 + 2\sqrt{2} \right)}^{1}$$
$$\left( 3 + 2\sqrt{2} \right)^{\frac{1}{2}x} = \frac{(3 + 2\sqrt{2)}(3 - 2\sqrt{2})}{3 + 2\sqrt{2}}$$
$${(3 + 2\sqrt{2})}^{\frac{1}{2}x} = \frac{1}{3 + 2\sqrt{2}}$$
$${(3 + 2\sqrt{2)}}^{\frac{1}{2}x} = (3{+ 2\sqrt{2})}^{- 1}$$
$$\frac{1}{2}x = - 1$$
x = −2
${(\frac{1}{3})}^{x} < ({\frac{1}{3})}^{2}$
$$\frac{1}{3} \in \left( 0,1 \right)$$
funkcja malejaca
$${(\frac{1}{3})}^{x} < ({\frac{1}{3})}^{2}$$
x > 2
x ∈ (2,+∞)
3x + 2 + 7x < 4 * 7x − 1 + 34 * 3x − 1
3x * 32 − 34 * 3x − 1 < 4 * 7x * 71 − 7x
$$9*3^{x} - \frac{34}{3}*3^{x} < \frac{4}{7}*7^{x} - 7^{x}$$
$$3^{x}\left( 9 - \frac{34}{3} \right) < 7^{x}\left( \frac{4}{7} - 1 \right)$$
$$3^{x}\left( - \frac{7}{3} \right) < 7^{x}\left( - \frac{3}{7} \right)\ \ \ |:7^{x}$$
$$\frac{3^{x}\left( - \frac{7}{3} \right)}{7^{x}} = \left( - \frac{3}{7} \right)\ \ \ \ |*( - \frac{3}{7})$$
$$\left( \frac{3}{7} \right)^{x} > \frac{9}{49}$$
$$\left( \frac{3}{7} \right)^{x} > \left( \frac{3}{7} \right)^{2}$$
funkcja malejaca
x < 2
x ∈ (−∞,2)
Zadanie 3
4x − 3 * 2x − m = 0
22x − 3 * 2x − m = 0
t = 2x
t > 0
t2 − 3t − m = 0
$$\frac{a = 1}{\begin{matrix}
b = - 3 \\
c = - m \\
\end{matrix}}$$
1 a ≠ 0
1 ≠ 0 dla m ∈ R
2 > 0
b2 − 4ac > 0
9 + 4m > 0
4m > −9
$$m > - \frac{9}{4}$$
3 t1 * t2 > 0
$$\frac{c}{a} > 0$$
$$\frac{- m}{1} > 0$$
−m > 0
m < 0
4 t1 + t2 > 0
$$\frac{- b}{a} > 0$$
$$\frac{3}{1} > 0$$
3 > 0
m ∈ R
zestawienie zalozen
$$m \in ( - \frac{9}{4},0)$$
16x − 4x + 1 − m2 + 1 = 0
42x − 4x * 41 − m2 + 1 = 0
4x = t
t > 0
t2 − 4t − m2 + 1 = 0
1) funkcja kwadratowa
1 a ≠ 0
1 ≠ 0 dla m ∈ R
2 = 0
b2 − 4(−m2+1) = 0
16 + 4m2 − 4 = 0
4m2 + 12 = 0
m2 + 3 = 0
m2 = −3
brak rozwiazania
$$3\ \ \ \frac{- b}{2a} > 0$$
2) funkcja kwadratowa
1 a ≠ 0
1 ≠ 0
2 > 0
b2 − 4ac > 0
12 + 4m2 > 0
m ∈ R
3 t1 * t2 < 0
$$\frac{c}{a} < 0$$
$$\frac{- m^{2} + 1}{1} < 0$$
−m2 + 1 < 0
1 − m2 < 0
(1−m)(1+m) < 0
m = 1 ∨ m = −1
m ∈ (−∞,−1) ∪ (1,+∞)
3) funkcja liniowa
a = 0
1 ≠ 0 dla m ∈ R
Zadanie 4
$\left\{ \begin{matrix} 2^{x}*3^{y} = 12 \\ 3^{x}*2^{y} = 18 \\ \end{matrix} \right.\ $
$$\frac{2^{x}*3^{y}}{3^{x}*2^{y}} = \frac{12}{18}$$
$$\left( \frac{2}{3} \right)^{x}*\left( \frac{3}{2} \right)^{y} = \frac{2}{3}$$
$$\left( \frac{2}{3} \right)^{x}*\left( \frac{2}{3} \right)^{- y} = \frac{2}{3}$$
$$\left( \frac{2}{3} \right)^{x - y}{= \left( \frac{2}{3} \right)}^{1}$$
funkcja roznowartosciowa
x − y = 1
x = y + 1
2y + 1 * 3y = 12
2 * 2y * 3y = 12 | : 2
2y * 3y = 6
(2*3)y = (2*3)1
funkcja roznowartosciowa
$$\left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} \right.\ $$
$\left\{ \begin{matrix} 5*5^{x - y} = \sqrt{25^{2y + 1}} \\ 8^{2x + 1} = 32*2^{4y - 1} \\ \end{matrix} \right.\ $
$$\left\{ \begin{matrix}
{5*5}^{x - y} = {(25^{2y + 1})}^{\frac{1}{2}} \\
8^{2x + 1} = 32*2^{4y - 1} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
5*5^{x - y} = {(5^{4y + 2})}^{\frac{1}{2}} \\
2^{6x + 3} = 32*2^{4y - 1} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
5*5^{x}*5^{- y} = 5^{2y}*5 \\
2^{6x}*2^{3} = 2^{4}*2^{4x - 1} \\
\end{matrix} \right.\ $$
funkcja roznowartosciowa
$$\left\{ \begin{matrix}
1 + x - y = 2y + 1 \\
6x + 3 = 4 + 4y \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x - 3y = 0 \\
6x - 4y = 1 \\
\end{matrix} \right.\ $$
x = 3y
6 * 3y − 4y = 1
18y − 4y = 1
14y = 1
$$y = \frac{1}{14}$$
$$x = \frac{3}{14}$$
$$\left\{ \begin{matrix}
x = \frac{3}{14} \\
y = \frac{1}{14} \\
\end{matrix} \right.\ $$
Zadanie 5
16x + 4x + 2 − 36 = 0
42x + 16 * 4x − 36 = 0
zalozenie:
t = 4x
t > 0
t2 + 16t − 36 = 0
=256 + 144 = 400
$$\sqrt{} = 20$$
$$t_{1} = \frac{- 16 - 20}{2} = - 18$$
t1 nie spelnia zalozenia
$$t_{2} = \frac{- 16 + 20}{2} = 2$$
4x = 2
funkcja roznowartosciowa
22x = 21
2x = 1
$$x = \frac{1}{2}$$
5x − 1 − 5 * 2x = 5x − 2 + 5 * 2x − 2
5x − 1 − 5x − 2 = 5 * 2x − 2 + 5 * 2x
$$\frac{1}{5}*5^{x} - \frac{1}{25}*5^{x} = \frac{5}{4}*2^{x} + {5*2}^{x}$$
$$5^{x}\left( \frac{1}{5} - \frac{1}{25} \right) = 2^{x}\left( \frac{5}{4} + 5 \right)$$
$$5^{x}\left( \frac{4}{25} \right) = 2^{x}\left( \frac{25}{4} \right)$$
$$\frac{5^{x}}{2^{x}} = \frac{25}{4}*\frac{4}{25}$$
$$\left( \frac{5}{2} \right)^{x} = 1$$
$${(\frac{5}{2})}^{x} = ({\frac{5}{2})}^{0}$$
x = 0
$2^{\sqrt{x}} = \sqrt{16^{\sqrt{x}}} - 2$
$$2^{\sqrt{x}} = 2^{2\sqrt{x}} - 2$$
$$- 2^{2\sqrt{x}} + 2^{\sqrt{x}} - 2 = 0$$
$$2^{2\sqrt{x}} - 2^{\sqrt{x}} + 2 = 0$$
zalozenie:
$$2^{\sqrt{x}} = t$$
t > 0
t2 − t − 2 = 0
=1 + 8 = 9
$$\sqrt{} = 3$$
$$t_{1} = \frac{1 - 3}{2} = - 1$$
t1 nie spelnia zalozenia
$$t_{2} = \frac{1 + 3}{2} = 2$$
$$2^{\sqrt{x}} = 2$$
$$2^{\sqrt{x}} = 2^{1}$$
funkcja roznowartosciowa
$$\sqrt{x} = 1$$
x = 1
$\left( \sqrt{4 - \sqrt{15}} \right)^{x} + \left( \sqrt{4 + \sqrt{15}} \right)^{x} = 8$
$${\sqrt{\frac{\left( 4 - \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}{\left( 4 + \sqrt{15} \right)}}}^{x} + {\sqrt{4 + \sqrt{15}}}^{x} = 8$$
$${\sqrt{\frac{16 - 15}{4 + \sqrt{15}}}}^{x} + {\sqrt{4 + \sqrt{15}}}^{x} = 8$$
$${\sqrt{\frac{1}{4 + \sqrt{15}}}}^{x} + {\sqrt{4 + \sqrt{15}}}^{x} = 8$$
$$\frac{1}{{\sqrt{4 + \sqrt{15}}}^{x}} + {\sqrt{4 + \sqrt{15}}}^{x} = 8$$
zalozenie:
$${\sqrt{4 + \sqrt{15}}}^{x} = t$$
t > 0
$$\frac{1}{t} + t - 8 = 0$$
t2 − 8t + 1 = 0
=64 − 4 = 60
$$\sqrt{} = 2\sqrt{15}$$
$$t_{1} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15}$$
$${\sqrt{4 + \sqrt{15}}}^{x} = 4 + \sqrt{15}$$
$$\left( 4 + \sqrt{15} \right)^{\frac{1}{2}x} = ({4 + \sqrt{15})}^{1}$$
funkcja roznowartosciowa
$$\frac{1}{2}x = 1$$
x = 2
$$t_{2} = \frac{8 - 2\sqrt{15}}{2} = 4 - \sqrt{15}$$
$${\sqrt{4 + \sqrt{15}}}^{x} = 4 - \sqrt{15}$$
$${(4 + \sqrt{15})}^{\frac{1}{2}x} = 4 - \sqrt{15}$$
$${(4 + \sqrt{15})}^{\frac{1}{2}x} = \frac{\left( 4 - \sqrt{15} \right)(4 + \sqrt{15})}{4 + \sqrt{15}}$$
$$\left( 4 + \sqrt{15} \right)^{\frac{1}{2}x} = \frac{1}{4 + \sqrt{15}}$$
$$\left( 4 + \sqrt{15} \right)^{\frac{1}{2}x} = ({4 + \sqrt{15})}^{- 1}$$
funkcja roznowartosciowa
$$\frac{1}{2}x = - 1$$
x = −2
$5*25^{\frac{1}{x}} + 3*10^{\frac{1}{x}} = 2*4^{\frac{1}{x}}$
$$5*25^{\frac{1}{x}} + 3*10^{\frac{1}{x}} = 2*4^{\frac{1}{x}}\ \ \ \ \ |:\ 4^{\frac{1}{x}}$$
x ≠ 0
$$5*5^{\frac{2}{x}} + 3*2^{\frac{1}{x}}*5^{\frac{1}{x}} - 2*2^{\frac{2}{x}} = 0$$
$$5*5^{\frac{1}{x}}*5^{\frac{1}{x}} + 3*2^{\frac{1}{x}}*5^{\frac{1}{x}} - 2*2^{\frac{1}{x}}*2^{\frac{1}{x}} = 0$$
$$3*5^{\frac{1}{x}}*5^{\frac{1}{x}} + 2*5^{\frac{1}{x}}*5^{\frac{1}{x}} + 3*2^{\frac{1}{x}}*5^{x} - 2*2^{\frac{1}{x}}*2^{\frac{1}{x}} = 0$$
$$\frac{5*25^{\frac{1}{x}}}{4^{\frac{1}{x}}} + \frac{3*2^{\frac{1}{x}}*5^{\frac{1}{x}}}{4^{\frac{1}{x}}} = 2$$
$$5*\left( \left( \frac{5}{2} \right)^{2} \right)^{\frac{1}{x}} + \ \frac{3*2^{\frac{1}{x}}*5^{\frac{1}{x}}}{2^{\frac{2}{x}}} = 2$$
$$5*\left( \frac{5}{2} \right)^{\frac{2}{x}} + 3*\frac{5^{\frac{1}{x}}}{2^{\frac{1}{x}}} = 2$$
$$5*\left( \frac{5}{2} \right)^{\frac{2}{x}} + 3*\left( \frac{5}{2} \right)^{\frac{1}{x}} - 2 = 0$$
$$\left( \frac{5}{2} \right)^{\frac{1}{x}} = t$$
t > 0
=9 + 40 = 49
$$\sqrt{} = 7$$
$$t_{1} = \frac{- 3 - 7}{10} = - 1$$
t1 nie spelnia zalozenia
$$t_{2} = \frac{- 3 + 7}{10} = \frac{2}{5}$$
$$\left( \frac{5}{2} \right)^{\frac{1}{x}} = ({\frac{5}{2})}^{- 1}$$
funkcja roznowartosciowa
$$\frac{1}{x} = - 1$$
−x = 1
x = −1
$4^{\left| x - 1 \right|} + 2^{\sqrt{x^{2} - 2x + 1}} - 2 = 0$
$$2^{2\left| x - 1 \right|} + 2^{\sqrt{({x - 1)}^{2}}} - 2 = 0$$
22|x−1| + 2|x−1| − 2 = 0
zalozenie:
2|x−1| = t
t > 0
t2 + t − 2 = 0
=1 + 8 = 9
$$\sqrt{} = 3$$
$$t_{1} = \frac{- 1 - 3}{2} = \frac{- 4}{2} = - 2$$
t1 nie spelnia zalozenia
$$t_{2} = \frac{- 1 + 3}{2} = 1$$
2|x−1| = 1
2|x−1| = 20
funkcja roznowartosciowa
x − 1 = 0
x = 1
Zadanie 6
$$\sqrt[3]{5\sqrt{2} + 7} - \sqrt[3]{5\sqrt{2} - 7}$$
(a+b)3 = a3 + 3a2b + 3ab2 + b3
(a − b)3 = a3 − 3a2b + 3ab2 + b3
$${(\sqrt{2} + 1)}^{3} = \sqrt{2^{3}} + 3*{(\sqrt{2})}^{2}*1 + 3*\sqrt{2}*1 = 2\sqrt{2} + 6 + 3\sqrt{2} + 1 = 7 + 5\sqrt{2}$$
$${(\sqrt{2} - 1)}^{3} = \sqrt{2^{3}} - 3*{(\sqrt{2})}^{2}*1 + 3\sqrt{2}*1 - 1 = \underset{\sqrt{8}}{} - 6 + 3\sqrt{2} - 1 = 5\sqrt{2} - 7$$
$$\sqrt[3]{5\sqrt{2} + 7} - \sqrt[3]{5\sqrt{2} - 7} = \left( \sqrt{2} + 1 \right) - \left( \sqrt{2} - 1 \right) = \sqrt{2} + 1 - \sqrt{2} + 1 = \sqrt{2} - \sqrt{2} + 1 + 1 = 2$$
2 jest liczba calkowita
Zadanie 7
(5 − x)x3 − 4x2 + x + 6 = 1
1 5 − x > 0
−x > −5
x < 5
(5−x)x3 − 4x2 + x + 6=(5−x)0
funkcja roznowartosciowa
x3 − 4x2 + x + 6 = 0
(x−2)(x2−2x−3) = 0
x = 2
x2 − 2x − 3 = 0
=4 + 12 = 16
$$\sqrt{} = 4$$
$$x_{1} = \frac{2 - 4}{2} = - 1$$
$$x_{2} = \frac{2 + 4}{2} = 3$$
2 5 − x = 1
−x = −4
x = 4
Odpowiedz : x ∈ {−1, 2, 3, 4}