FUNKCJA KWADRATOWA – rozwiązania zadań
Zadanie 1
(m+1)x2 − 4mx + m + 1 = 0
a = m + 1
b = −4m
c = m + 1
1 m + 1 ≠ 0 ⇒ m ≠ −1
2 > 0
3 x1 * x2 > 0
4 x1 + x2 > 0
Ad.1
m ≠ −1
Ad.2
b2 − 4ac > 0
16m2 − 4(m+1)(m+1) > 0
16m2 − 4(m2+2m+1) > 0
16m2 − 4m2 − 8m − 4 > 0
12m2 − 8m − 4 > 0
3m2 − 2m − 1 > 0
=16
$$\sqrt{} = 4$$
$$m_{1} = - \frac{1}{3}$$
m2 = 1
$$m \in \left( - \infty, - \frac{1}{3} \right)(1, + \infty)$$
Ad.3
$$x_{1}*x_{2} < 0\ \Leftrightarrow \frac{c}{a} < 0$$
$$\frac{m + 1}{m + 1} > 0$$
1 > 0
m1 = −1
m2 = −1
m1 = m2
m ∈ R
Ad.4
$$x_{1} + x_{2} > 0\ \Leftrightarrow - \frac{b}{a} > 0$$
$$\frac{4m}{m + 1} > 0\ \ \ \ \ \ \ \ \ \ \ \ |\left( m + 1 \right)^{2}$$
4m(m+1) > 0
4m = 0 ⇒ m = 0
m + 1 = 0 ⇒ m = −1
m1 = 0, m2 = −1
m ∈ (−∞,−1) ∪ (0, ∞)
Odpowiedz : m ∈ (−∞,−1) ∪ (1, +∞)
Zadanie 2
x2 − (m−5)x + 2(3−m) = 0
1 a ≠ 0 ⇒ 1 ≠ 0 dla m ∈ R
2 ≥ 0
b2 − 4ac ≥ 0
(m−5)2 − 4 * 2(3−m) ≥ 0
m2 − 10m + 25 − 24 + 8m ≥ 0
m2 − 2m + 1 ≥ 0
=4 − 4 = 0
$$m = \frac{- b}{2a}$$
$$m = \frac{2}{2} = 1$$
m ∈ R
$$\mathbf{3}\text{\ \ \ }\frac{1}{x_{1}} + \frac{1}{x_{2}} < 0$$
$$\frac{x_{2} + x_{1}}{x_{1}x_{2}} < 0$$
$$\frac{- \frac{b}{a}}{\frac{c}{a}} < 0$$
$$- \frac{b}{c} < 0$$
$$\frac{m - 5}{2\left( 3 - m \right)} < 0\ \ \ \ \ |\ {2\left( 3 - m \right)}^{2}$$
(m−5)(3−m) < 0
m = 5
m = 3
Odpowiedz : m ∈ (−∞,3) ∪ (5, +∞)
Zadanie 3
(m−1)x2 − 2mx + m − 2 = 0
m − 1 = 0 ⇒ m ≠ 1
a = m − 1
b = −2m
c = m − 2
1 > 0
>0 ⇔ b2 − 4ac > 0
4m2 − 4(m−1)(m−2) > 0
4m2 − 4(m2−2m−m+2) > 0
4m2 − 4m2 + 8m + 4m − 8 > 0
12m > 8
$$m > \frac{2}{3}$$
$$m \in (\frac{2}{3}, + \infty)$$
2 x1x2 > 0
$$x_{1}x_{2} > 0\ \Leftrightarrow \frac{c}{a} > 0$$
$$\frac{m - 2}{m - 1} > 0$$
m = 2
m = 1
m ∈ (−∞,1) ∪ (2, +∞)
3 x1 + x2 < 0
$$x_{1} + x_{2} < 0\ \Leftrightarrow \ - \frac{b}{a} < 0$$
$$\frac{2m}{m - 1} < 0$$
2m(m−1) > 0
m = 0 m = 1
m ∈ (0, 1)
Zadanie 4
(1+m)x2 + 3x + 7 > 0
a = 1 + m
b = 3
c = 7
1 a > 0
1 + m > 0
m > −1
m ∈ (−1,+∞)
2 < 0
b2 − 4ac < 0
9 − 4(1+m) * 7 < 0
9 − 28 − 28m < 0
−28m < 19
$$m > - \frac{19}{28}$$
$$Odpowiedz:\ \ \ m \in ( - \frac{19}{28}, + \infty)$$
Zadanie 5
mx2 + 2(m+1)x + m = 0
I sposob
a = m
b = 2(m+1)
c = m
x12 + x22 > x1 + x2
$$\left( x_{1} + x_{2} \right)^{2} - 2x_{1}x_{2} > - \frac{b}{a}$$
$$\left( - \frac{b}{a} \right)^{2} - \frac{2c}{a} > - \frac{b}{a}$$
$$\frac{b^{2}}{a^{2}} - \frac{2c}{a} + \frac{b}{a} > 0$$
$$\frac{b^{2} - 2ac + ab}{a^{2}} > 0$$
$$\frac{4\left( m + 1 \right)^{2} - 2m^{2} + 2m\left( m + 1 \right)}{m^{2}} > 0$$
$$\frac{4\left( m^{2} + 2m + 1 \right) - 2m^{2} + 2m^{2} + 2m}{m^{2}} > 0$$
$$\frac{4m^{2} + 8m + 4 + 2m}{m^{2}} > 0$$
$$\frac{4m^{2} + 10m + 4}{m^{2}} > 0$$
4m2 + 10m + 4 = 0
=100 − 16 * 4 = 100 − 64 = 36
$$\sqrt{} = 6$$
$$x_{1} = \frac{- 10 - 6}{8} = - 2$$
$$x_{2} = \frac{- 10 + 6}{8} = - \frac{1}{2}$$
m2 = 0
m = 0
$$Odpowiedz:\ \ \ m \in \left( - \frac{1}{2},0 \right) \cup (0, + \infty)$$
II sposob
1 a ≠ 0
a = m ⇒ m ≠ 0
2 ≥ 0
$$m \geq - \frac{1}{2}$$
zestawienie zalozen
$$Odpowiedz:\ \ \ \ m \in \left( - \frac{1}{2},0 \right) \cup (0, + \infty)$$