Projekt 2B zuzia

CZĘŚĆ 2B

1. Wyznaczenie charakterystycznej i obliczeniowej nośności pala na podstawie wyników próbnych obciążeń


$${R_{m}}_{\text{mean}} = \frac{\sum_{}^{}R_{\text{im}}}{n} = \frac{458 + 372 + 359 + 488 + 474}{5} = 430,20\ kN$$


Rcmmin = min{458;372;359;488;474} = 359 kN


$$R_{\text{ck}} = min\left\{ \frac{{R_{m}}_{\text{mean}}}{\xi_{1}};\frac{{R_{\text{cm}}}_{\min}}{\xi_{2}} \right\} = min\left\{ \frac{430,20}{1,0};\frac{359}{1,0} \right\} = 359\ kN$$


$$R_{\text{cd}} = \frac{R_{\text{ck}}}{1,1} = \frac{359}{1,1} = 336,36\ kN$$

2. Przyjęcie liczby pali i ich rozłożenie pod oczepem

Obciążenia charakterystyczne

Oddziaływania Schemat 1 Schemat 2
V Mx
kN kNm
Stale G 1043
Zmienne Q 327
Wyjątkowe A 327
Oddziaływania Schemat 1 Schemat 2
V Mx
kN kNm
Stale G 1408,05
Zmienne Q 328,5
Wyjątkowe A 327

Obciążenia obliczeniowe


Vd = 1408, 5 + 328, 5 + 314 = 2051 kN


$$n = \frac{1,5*2051}{336,36} = 9,14 \rightarrow \text{minimalna}\ \text{liczba}\ \text{pali}\ \text{to\ }10$$

Przyjmuję układ 10 pali w czterech rzędach, skrajne po 3, a środkowe po 2.

3. Obliczenie obciążenia na pale

3.1 Rozstaw pali

Dla l < 10m, r = 3 ÷ 4D

Założono rozstaw pali r = 4D = 4 • 0, 46 m = 1, 84 m

3.2 Wymiary oczepu

h = 1 m

4. Wyznaczenie usytuowanie oczepu

3.1 Usytuowanie słupa względem środka ciężkości układu palowego.


df = 1, 0 m


$$e_{x,G} = \frac{V_{\text{kG}} \bullet 0 - H_{\text{xkG}} \bullet 1,00 + M_{\text{ykG}}}{V_{\text{kG}}} = \frac{- ( - 36*1,00) + 15}{1043} = 0,049\ m = 4,8\ cm$$


$$e_{y,G} = \frac{V_{\text{kG}} \bullet 0 + H_{\text{ykG}} \bullet 1,00 + M_{\text{xkG}}}{V_{\text{kG}}} = \frac{205*1,00 + 21}{1043} = 0,217\ m = 21,7\ cm$$

→ należy przesunąć stopę fundamentową względem osi ściany w lewo o 5 cm wzdłuż osi x i w prawo o 22 cm względem osi y

SCHEMAT I

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykQ}} - (H_{\text{xkG}} + H_{\text{xkQ}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kQ}})*0,05}{V_{\text{kG}} + V_{\text{kQ}}} = \frac{35 - ( - 57) \bullet 1,00 - 1370*0,05}{1370} = 0,017\ $m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkQ}} + (H_{\text{ykG}} + H_{\text{ykQ}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kQ}})*0,22}{V_{\text{kG}} + V_{\text{kQ}}} = \frac{40 + 208 \bullet 1,00 - 1370*0,22}{1370} = - 0,039\ m$

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,039}{4,44} + \frac{0,017\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykA}} - (H_{\text{xkG}} + H_{\text{xkA}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}})*0,05}{V_{\text{kG}} + V_{\text{kA}}} = \frac{35 - ( - 57) \bullet 1,00 - 1370*0,05}{1370} = 0,017\ $m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkA}} + (H_{\text{ykG}} + H_{\text{ykA}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}})*0,22}{V_{\text{kG}} + V_{\text{kA}}} = \frac{40 + 208 \bullet 1,00 - 1370*0,22}{1370} = - 0,039\ m$

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,039}{4,44} + \frac{0,017\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykA}} + M_{\text{ykQ}} - \left( H_{\text{xkG}} + H_{\text{xkA}} + H_{\text{xkQ}} \right) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}})*0,05}{V_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}}} = \frac{55 - ( - 78) \bullet 1,00 - 1697*0,05}{1697} = 0,028$m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkA}} + M_{\text{xkQ}} + \left( H_{\text{ykG}} + H_{\text{ykA}} + H_{\text{ykQ}} \right) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}})*0,22}{V_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}}} = \frac{59 + 211 \bullet 1,00 - 1697*0,22}{1697} = - 0,060\ $m

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,060}{4,44} + \frac{0,028\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

SCHEMAT II

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykQ}} - (H_{\text{xkG}} + H_{\text{xkQ}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kQ}})*0,05}{V_{\text{kG}} + V_{\text{kQ}}} = \frac{19 - ( - 86) \bullet 1,00 - 1357*0,05}{1357} = 0,027\ $m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkQ}} + (H_{\text{ykG}} + H_{\text{ykQ}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kQ}})*0,22}{V_{\text{kG}} + V_{\text{kQ}}} = \frac{- 2 + 241 \bullet 1,00 - 1357*0,22}{1357} = - 0,044\ m$

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,044}{4,44} + \frac{0,027\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykA}} - (H_{\text{xkG}} + H_{\text{xkA}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}})*0,05}{V_{\text{kG}} + V_{\text{kA}}} = \frac{19 - ( - 86) \bullet 1,00 - 1357*0,05}{1357} = 0,027\ $m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkA}} + (H_{\text{ykG}} + H_{\text{ykA}}) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}})*0,22}{V_{\text{kG}} + V_{\text{kA}}} = \frac{- 2 + 241 \bullet 1,00 - 1357*0,22}{1357} = - 0,044\ m$

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,044}{4,44} + \frac{0,027\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

$e_{x,G + Q} = \frac{M_{\text{ykG}} + M_{\text{ykA}} + M_{\text{ykQ}} - \left( H_{\text{xkG}} + H_{\text{xkA}} + H_{\text{xkQ}} \right) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}})*0,05}{V_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}}} = \frac{23 - ( - 136) \bullet 1,00 - 1671*0,05}{1671} = 0,045\ $m

$e_{y,G + Q} = \frac{M_{\text{xkG}} + M_{\text{xkA}} + M_{\text{xkQ}} + \left( H_{\text{ykG}} + H_{\text{ykA}} + H_{\text{ykQ}} \right) \bullet 1,00{- (V}_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}})*0,22}{V_{\text{kG}} + V_{\text{kA}} + V_{\text{kQ}}} = \frac{- 25 + 277 \bullet 1,00 - 1671*0,22}{1671} = - 0,069\ $m

$\frac{e_{y}}{B} + \frac{e_{x}}{L} = \frac{- 0,069}{4,44} + \frac{0,045\ }{5,80} < \frac{1}{6} = 0,17$ → warunek spełniony

4.2 Zestawienie obciążeń

Wd = 643, 80 + 290, 83 = 934, 63 kN

5. Sprawdzenie nośności pala

SCHEMAT I


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2343,13}{10} + 24,38 + 147,39 = 306,083\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2671,18}{10} + 11,23 + 34,83 = 213,18\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2669,69}{10} + 11,23 + 34,83 = 213,03\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2998,18}{10} + 23,02 + 67,40 = 290,388\ kN$$

SCHEMAT II


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2343,13}{10} + 24,38 + 147,39 = 306,083\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2813,68}{10} + 17,76 + 28,46 = 227,59\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{2658,68}{10} + 17,76 + 28,46 = 212,09\ kN$$


$${F_{d}}_{\max} = \frac{V_{d} + W_{d}}{n} + \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} + \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} = \frac{3127,68}{10} + 36,06 + 75,40 = 324,23\ kN$$


Fdmax dla kombinacji G + Q + A


$$\frac{V_{d} + W_{d}}{R_{c,d}} = \frac{3127,68}{336,36} = 9,30 < n = 10 \rightarrow warunek\ spelniony$$

Fdmax = 324, 23  ≤ Rc, d = 336, 36 kN − warunek spelniony

${F_{d}}_{\min} = \frac{V_{d} + W_{d}}{n} - \frac{M_{x,w} \bullet y}{\sum_{}^{}y^{2}} - \frac{M_{y,w} \bullet x}{\sum_{}^{}x^{2}} = \frac{3127,68}{10} - 36,06 - 75,40 = 101,31\ kN$


$${F_{d}}_{1} = \frac{V_{d} + W_{d}}{10} - \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} - \frac{75,45*2,52}{38,94} + \frac{115,62*1,84}{38,94} = 213,35\ kN$$


$${F_{d}}_{2} = \frac{V_{d} + W_{d}}{10} - \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} - \frac{75,45*2,52}{25,40} + 0 = 205,28\ kN$$


$${F_{d}}_{3} = \frac{V_{d} + W_{d}}{10} - \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} - \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} - \frac{75,45*2,52}{38,94} - \frac{115,62*1,84}{38,94} = 202,42\ kN$$


$${F_{d}}_{4} = \frac{V_{d} + W_{d}}{10} - \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} - \frac{75,45*0,92}{6,77} + \frac{115,62*0,92}{6,77} = 218,23\ kN$$


$${F_{d}}_{5} = \frac{V_{d} + W_{d}}{10} - \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} - \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} - \frac{75,45*0,92}{6,77} - \frac{115,62*0,92}{6,77} = 186,80\ kN$$


$${F_{d}}_{6} = \frac{V_{d} + W_{d}}{10} + \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} + \frac{75,45*0,92}{6,77} + \frac{115,62*0,92}{6,77} = 238,73\ kN$$


$${F_{d}}_{7} = \frac{V_{d} + W_{d}}{10} + \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} - \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} + \frac{75,45*0,92}{6,77} - \frac{115,62*0,92}{6,77} = 207,31\ kN$$


$${F_{d}}_{8} = \frac{V_{d} + W_{d}}{10} + \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} + \frac{75,45*2,52}{38,94} + \frac{115,62*1,84}{38,94} = 324,23\ kN$$


$${F_{d}}_{9} = \frac{V_{d} + W_{d}}{10} + \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} + \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} + \frac{75,45*2,52}{25,40} + 0 = 220,25\ kN$$


$${F_{d}}_{10} = \frac{V_{d} + W_{d}}{10} + \frac{M_{y,w} \bullet x}{4x^{2} + 4x^{2}} - \frac{M_{x,w} \bullet y}{4y^{2} + 6y^{2}} = \frac{3127,68}{10} + \frac{75,45*2,52}{38,94} - \frac{115,62*1,84}{38,94} = 216,91\ kN$$

6. Zaprojektowanie konstrukcji żelbetowej stopy

Grubość otuliny (na bocznych ściankach oczepu) c = 5 cm, Stal 34GS fyd = 410MPa

Otulina na dolnej powierzchni oczepu 10 cm; dB = 100 − 10 = 90 cm


As, min = 0, 0013 • 4, 44 • hf = 0, 0013 • 2, 60 • 1, 00 = 57, 72 cm2


$$z_{x1} = \frac{1}{d_{L}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{x} \right) = \frac{1}{0,9} \bullet \left( 758,39 \bullet 2,97 \right) = 2502,69\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{2502,69}{410 \bullet 10^{3}} = 0,00610\ m^{2} = 61,0\ \text{cm}^{2}$$

Przyjęto 20 20=203,14=62,80 cm2


$$z_{x2} = \frac{1}{d_{L}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{x} \right) = \frac{1}{0,9} \bullet \left( 446,04 \bullet 1,37 \right) = 678,97\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{678,97}{410 \bullet 10^{3}} = 0,00165\ m^{2} = 16,50\ \text{cm}^{2}$$

Przyjęto 19 20=193,14=59,66 cm2


$$z_{x3} = \frac{1}{d_{L}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{x} \right) = \frac{1}{0,9} \bullet \left( 405,03 \bullet 1,37 \right) = 616,55\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{616,55}{410 \bullet 10^{3}} = 0,00150\ m^{2} = 15,04\ \text{cm}^{2}$$

Przyjęto 19 20=193,14=59,66 cm2


$$z_{x4} = \frac{1}{d_{L}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{x} \right) = \frac{1}{0,9} \bullet \left( 621,05 \bullet 2,97 \right) = 2049,46\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{2049,46}{410 \bullet 10^{3}} = 0,004998\ m^{2} = 49,98\ \text{cm}^{2}$$

Przyjęto 19 20=193,14=59,66 cm2


As, min = 0, 0013 • L • hf = 0, 0013 • 5, 80 • 1, 00 = 75, 40 cm2


$$z_{y1} = \frac{1}{d_{B}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{y} \right) = \frac{1}{0,8} \bullet \left( 537,58 \bullet 1,62 \right) = 1088,80\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{1088,80}{410 \bullet 10^{3}} = 0,002655\ m^{2} = 26,55\ \text{cm}^{2}$$

Przyjęto 25 20=253,14=78,50 cm2


$$z_{y2} = \frac{1}{d_{B}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{y} \right) = \frac{1}{0,8} \bullet \left( 456,96 \bullet 0,70 \right) = 399,84\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{399,84}{410 \bullet 10^{3}} = 0,000975\ m^{2} = 9,75\ \text{cm}^{2}$$

Przyjęto 25 20=253,14=78,50 cm2


$$z_{y3} = \frac{1}{d_{B}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{y} \right) = \frac{1}{0,8} \bullet \left( 425,53 \bullet 0,22 \right) = 117,02\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{117,02}{410 \bullet 10^{3}} = 0,000285\ m^{2} = 2,85\ \text{cm}^{2}$$

Przyjęto 25 20=253,14=78,50 cm2


$$z_{y4} = \frac{1}{d_{B}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{y} \right) = \frac{1}{0,8} \bullet \left( 394,11 \bullet 1,14 \right) = 561,61\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{561,61}{410 \bullet 10^{3}} = 0,001369\ m^{2} = 13,69\ \text{cm}^{2}$$

Przyjęto 25 20=253,14=78,50 cm2


$$z_{y5} = \frac{1}{d_{B}} \bullet \left( \sum_{}^{}F_{d} \bullet l_{y} \right) = \frac{1}{0,8} \bullet \left( 419,33 \bullet 2,06 \right) = 863,82\ kN$$


$$A_{s} = \frac{Z_{x}}{f_{\text{yd}}} = \frac{863,83}{410 \bullet 10^{3}} = 0,002107\ m^{2} = 21,07\ \text{cm}^{2}$$

Przyjęto 25 20=253,14=78,50 cm2


Wyszukiwarka

Podobne podstrony:
Projekt 2A zuzia
Projekt 2B, Geologia GZMiW UAM 2010-2013, II rok, Geofizyka, Projekt 2, B
2b lista projektow2
urządzenia, projekt Zuzia
2b projekt
ADANIE 2b, Resources, Budownictwo, Fundamentowanie, Projekt, Fundamentowanie, Fundamentowanie-1, Pal
ZADANIE 2b, Resources, Budownictwo, Fundamentowanie, Projekt, Fundamentowanie, Fundamentowanie-1
2b przykładowa struktura sw projektów infrastrukturalnych suez4
PROJEKT EDUKACYJNY 2B
Zadanie Projektowe Nr 2b
2B-I, Studia Mechatronika, Semestr 4, TMM, Projekty
cwiczenie projektowe nr 2B id 1 Nieznany
2b lista projektow2
projekt o narkomanii(1)

więcej podobnych podstron