Ćwiczenie projektowe z Konstrukcji Betonowych
Sem.V
Temat nr 214 - Projekt hali żelbetowej
L=m
B=m
n=
$$\frac{B}{L} = \frac{}{} = > 2 \rightarrow plyta\ jednokierunkowa$$
$$h_{p} = \left\langle \frac{1}{40} \div \frac{1}{30} \right\rangle L = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\text{cm}$$
nastąpiła zmiana grubości płyty ze względu na nie spełnienie warunku :
(w rysunkach jest stara wartość 10 cm, z projektu wstępnego)
$$h_{z} = \left\langle \frac{1}{15} \div \frac{1}{12} \right\rangle B = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\ \text{cm}$$
$$b_{z} = \left\langle \frac{3}{10} \div \frac{5}{10} \right\rangle h_{z} = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\text{cm}$$
$$h_{r} = \left\langle \frac{1}{12} \div \frac{1}{10} \right\rangle nL = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\ \text{cm}$$
$$b_{r} = \left\langle \frac{3}{10} \div \frac{5}{10} \right\rangle h_{r} = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\ \text{cm}$$
$$h_{sl} = \left\langle \frac{6}{10} \div \frac{7}{10} \right\rangle h_{r} = \left\langle cm;\text{cm} \right\rangle \rightarrow przyjeto\ \text{cm}$$
bsl = br = cm
Dla obciazenia stalego
Lp. |
Obciazenie |
$$g_{\text{k\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
γf |
$$g_{\text{o\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
---|---|---|---|---|
1. |
|
1, 35 |
||
2. |
|
1, 35 |
||
3. |
|
1, 35 |
||
4. |
Folia PE |
− |
− |
− |
5. |
|
1, 35 |
||
6. |
|
1, 35 |
||
$$\sum_{}^{}:$$ |
− |
Dla obciazenia zmiennego
Lp. |
Nazwa obciazenia |
$$p_{\text{k\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
γf |
$$p_{\text{o\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
---|---|---|---|---|
1. |
|
1, 5 |
po = kN/m
Dla obciazenia stalego
Lp. |
Obciazenie |
$$q_{\text{k\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
γf |
$$q_{\text{o\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
---|---|---|---|---|
1. |
|
0, 200 |
1, 35 |
0, 270 |
2. |
|
0, 630 |
1, 35 |
0, 851 |
3. |
|
0, 067 |
1, 35 |
0, 091 |
4. |
Folia PE |
− |
− |
− |
5. |
|
2, 5 |
1, 35 |
3, 375 |
6. |
|
0, 285 |
1, 35 |
0, 385 |
$$\sum_{}^{}:$$ |
|
− |
|
Dla obciazenia zmiennego
Lp. |
Nazwa obciazenia |
$$p_{\text{k\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
γf |
$$p_{\text{o\ }}\lbrack\frac{\text{kN}}{m}\rbrack$$ |
---|---|---|---|---|
1. |
|
0, 96 |
1, 5 |
1, 44 |
$$\sum_{}^{}:$$ |
|
− |
|
$$\Sigma{(p + g)}^{\text{obl}} = 4,972 + 1,440 = 6,412\frac{\text{kN}}{m}$$
$Strop:\ \ 21,997\frac{\text{kN}}{\text{mmb}} \bullet 7,7m \bullet 0,5 \bullet \left( 11,4m - 2 \bullet 0,65m \right) = 855,353kN$
$Stropodach:\ \ 6,412\frac{\text{kN}}{m}mb \bullet 7,7m \bullet 0,5 \bullet 11,4m = 281,423\ kN$
$Slup:\ 8,8m \bullet 25\frac{\text{kN}}{m^{3} \bullet 0,65m \bullet 0,4m = 57,2\ kN}$
$Fundament:2,8m \bullet 3,8m \bullet 25\frac{\text{kN}}{m^{3} \bullet 1m = 266,00\ kN}$
Σ : 1459, 976 kN
$$0,81 \bullet 200kN/m^{2} \geq \frac{1,4 \bullet 1459,976\ kN}{2,8m \bullet 3,8m}$$
$$162\frac{\text{kN}}{m^{2}} \geq 192,102\frac{\text{kN}}{m^{2}} \rightarrow \mathbf{Nie\ spelniono\ warunku,\ zwiekszenie\ stopy}$$
$Fundament:3,2\ m \bullet 4,2m \bullet 25\frac{\text{kN}}{m^{3} \bullet 1m = 336\ kN}$
Σ : 1529, 976 kN
$$162\frac{\text{kN}}{m^{2}} \geq \frac{1,4 \bullet 1593,976\ kN}{3,2m \bullet 4,2m} = 159,373\frac{\text{kN}}{m^{2}} \rightarrow \mathbf{Warunek\ spelniono}$$
Przyjęto stopę fundamentową o wymiarach 3,2 m x 4,2 m
3.1.1.1.maxMAB= maxMCD
kN/m
kN/m |
+ | kN/m |
---|
M [kNm]
$$\mathbf{\text{maxM}}_{\mathbf{\text{AB}}} = 0,080 \bullet g_{o} \bullet L^{2} + 0,101 \bullet p_{o} \bullet L^{2} = 0,080 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m} + 0,101 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
maxMAB= maxMCD=kNm
3.1.1.2. minMAB= minMCD
kN/m
+
|
---|
M [kNm]
$$\mathbf{\text{minM}}_{\mathbf{\text{AB}}} = 0,080 \bullet g_{o} \bullet L^{2} - 0,025 \bullet p_{o} \bullet L^{2} = 0,080 \bullet \frac{\text{kN}}{m} \bullet \left( m \right)^{2} - 0,025 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
minMAB = minMCD= kNm
  3.1.1.3. maxMBC
kN/m
+
|
---|
M [kNm] |
---|
$$\mathbf{\text{maxM}}_{\mathbf{\text{BC}}} = 0,025 \bullet g_{o} \bullet L^{2} + 0,075 \bullet p_{o} \bullet L^{2} = 0,025 \bullet \frac{\text{kN}}{m} \bullet \left( m \right)^{2} + 0,075 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
maxMBC= kNm
3.1.1.4. minMBC
kN/m
kN/m |
+ | kN/m |
---|
M [kNm]
$$\mathbf{\text{minM}}_{\mathbf{\text{BC}}} = 0,025 \bullet g_{o} \bullet L^{2} - 0,050 \bullet p_{o} \bullet L^{2} = 0,025 \bullet \frac{\text{kN}}{m} \bullet \left( m \right)^{2} - 0,050 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
minMBC= kNm
3.1.2.1. maxMB=maxMC
kN/m
+ | kN/m |
---|
M [kNm]
$$\mathbf{\text{maxM}}_{\mathbf{B}}\mathbf{=} - 0,1 \bullet g_{o} \bullet L^{2} + 0,017 \bullet p_{o} \bullet L^{2} = - 0,1 \bullet \frac{\text{kN}}{m} \bullet \left( m \right)^{2} + 0,017 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
maxMB=maxMC=kNm
3.1.2.2. minMB=minMC
kN/m
kN/m |
+ |
---|
M [kNm]
$$\mathbf{\text{minM}}_{\mathbf{B}} = - 0,1 \bullet g_{o} \bullet L^{2} - 0,117 \bullet p_{o} \bullet L^{2} = - 0,1 \bullet \frac{\text{kN}}{m} \bullet \left( m \right)^{2} - 0,117 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
minMB = minMC=kNm
4.1.2.3. MA=MD=0
maxMA = minMA = 0
maxMD = minMD = 0
[MB] = max|MB| − min{|odpTBL|, |odpTBP| • 0, 5 • bz + (go + po)•0, 5 • bz • 0, 25 • bz
$$T_{B}^{L} = - 0,6 \bullet g_{o} \bullet L - 0,617 \bullet p_{o} \bullet L = - 0,6 \bullet \frac{\text{kN}}{m} \bullet - 0,617 \bullet \frac{\text{kN}}{m} \bullet$$
TBL=kN
$$T_{B}^{P} = 0,5 \bullet g_{o} \bullet L + 0,583 \bullet p_{o} \bullet L = 0,5 \bullet \frac{\text{kN}}{m} \bullet m + 0,583 \bullet \frac{\text{kN}}{m} \bullet m$$
TBP=kN
$$\left\lbrack \mathbf{M}_{\mathbf{B}} \right\rbrack = \left| \text{kNm} \right| - kN \bullet 0,5 \bullet cm \bullet 0,01 + \left( + \right)\frac{\text{kN}}{m} \bullet \frac{1}{8} \bullet cm \bullet 0,01$$
[MB]=[MC]=kNm
3.1.5.1.  usrMBC
$$usrM_{\text{BC}} = 0,5 \bullet \left( \min M_{\text{BC}} + \frac{\text{odp}M_{B} + odpM_{C}}{2} \right)$$
$$\text{odp}M_{B} = - 0,1 \bullet g_{o} \bullet L^{2} - 0,05 \bullet p_{o} \bullet L^{2} = - 0,1\frac{\text{kN}}{m} \bullet \left( m \right)^{2} - 0,05 \bullet \left( m \right)^{2} \bullet \frac{\text{kN}}{m}$$
odpMB = odpMC=kNm
$$\mathbf{usr}\mathbf{M}_{\mathbf{\text{BC}}} = 0,5 \bullet \left( kNm + \frac{\text{kNm}\text{kNm}}{2} \right)$$
usrMBC=kNm
3.1.5.2.  usrMAB=usrMCD
$$usrM_{\text{AB}} = 0,5 \bullet \left( \min M_{\text{AB}} + \frac{\text{odp}M_{A} + odpM_{B}}{2} \right)$$
odpMB=kNm
odpMA = 0 kNm
$$\mathbf{usr}\mathbf{M}_{\mathbf{\text{AB}}} = 0,5 \bullet \left( kNm + \frac{0\ \ kNm\text{kNm}}{2} \right)$$
usrMAB = usrMCD=kNm
3.2.1.  maxRA=maxRD
$$\mathbf{\text{maxR}}_{\mathbf{A}} = 0,4 \bullet g_{o} \bullet L + 0,45 \bullet p_{o} \bullet L = 0,4 \bullet \frac{\text{kN}}{m} \bullet m + 0,45 \bullet \frac{\text{kN}}{m} \bullet m$$
max RA =max RD =kN
3.2.2.  minRA=minRD
$$\text{minR}_{A} = 0,4 \bullet g_{o} \bullet L - 0,05 \bullet p_{o} \bullet L = 0,4 \bullet \frac{\text{kN}}{m} \bullet m - 0,05 \bullet \frac{\text{kN}}{m} \bullet m$$
min RA =min RD =kN
 3.2.3.  maxRB=maxRC
$$\text{maxR}_{B} = 1,1 \bullet g_{o} \bullet L + 1,2 \bullet p_{o} \bullet L = 1,1 \bullet \frac{\text{kN}}{m} \bullet m + 1,2 \bullet \frac{\text{kN}}{m} \bullet m$$
maxRB=maxRC=kN
3.2.4.   minRB=minRC
$$\text{minR}_{B} = 1,1 \bullet g_{o} \bullet L - 0,1 \bullet p_{o} \bullet L = 1,1 \bullet \frac{\text{kN}}{m} \bullet m - 0,1 \bullet \frac{\text{kN}}{m} \bullet m$$
minRB =minRC =kN
3.3.1.  TBL/TCP
minTBL=kN (pkt.3.1.4)
$$\text{maxT}_{B}^{L} = - 0,6 \bullet g_{o} \bullet L + 0,017 \bullet p_{o} \bullet L = - 0,6 \bullet \frac{\text{kN}}{m} \bullet m + 0,017 \bullet \frac{\text{kN}}{m} \bullet m$$
maxTBL=kN
maxTCP=−minTBL=kN
minTCP=−maxTBL=kN
3.3.2.  TBP/TCL
$$\text{minT}_{B}^{P} = 0,500 \bullet g_{o} \bullet L - 0,083 \bullet p_{o} \bullet L = 0,500 \bullet \frac{\text{kN}}{m} \bullet m - 0,083 \bullet \frac{\text{kN}}{m} \bullet m$$
minTBP=kN
maxTBP = kN (pkt.3.1.4)
maxTCL=−minTBP=kN
minTCL=−maxTBP=kN
Beton C/
fck = MPa
$$f_{\text{cd}} = \frac{f_{\text{ck}}}{\gamma} = \frac{\text{MPa}}{1,5} = \text{\ MPa}$$
fctm = MPa
Stal A III N
fyk = MPa
$$f_{\text{yd}} = \frac{f_{\text{yk}}}{\gamma_{s}} = \frac{\text{MPa}}{1,15} = \text{MPa}$$
Es = GPa = •103MPa
$\varepsilon_{S1} = \frac{f_{\text{yd}}}{E_{s}} = \frac{}{\bullet 10^{3}} =$
Otulina
wedlug normy PN − EN 1992 − 1 − 1 2008 przyjeto klase ekspozycji XC1 -> Klasa S3 -> projektowy okres użytkowania to 100 lat.
c = cnom = cmin + cdev
cmin = 15 mm
cdev = 5 mm
c = cnom = 15 mm + 5 mm = 20 mm=cm
5.2.1.  MAB=MCD
Zastotowanie zbrojenia :     ⌀=mm
$$\mu_{\text{eff}} = \frac{|M_{\text{AB}}|}{b \bullet d^{2} \bullet f_{\text{cd}}}$$
a1 = c + 0, 5 • ⌀ = cm + 0, 5 •  cm =  cm
d = hp − a1 =  cm −  cm = cm
$$\mu_{\text{eff}} = \frac{\mathbf{}kNm \bullet 100}{100\ cm \bullet \left( \text{cm} \right)^{2} \bullet \text{\ MPa} \bullet 0,1} =$$
$\xi_{\text{eff}} = 1 - \sqrt{1 - 2 \bullet \mu_{\text{eff}}} = 1 - \sqrt{1 - 2 \bullet} =$
$$\xi_{eff,lim} = 0,8 \bullet \frac{\varepsilon_{\text{cu}}}{\varepsilon_{\text{cu}} + \frac{f_{\text{yd}}}{E_{s}}}$$
εcu = 3, 5 %0 = 3, 5 • 10−3
$$\xi_{eff,lim} = 0,8 \bullet \frac{3,5 \bullet 10^{- 3}}{3,5 \bullet 10^{- 3} + \frac{}{\bullet 10^{3}}} =$$
ξeff < ξeff, lim
$$A_{S1} = \xi_{\text{eff}} \bullet b \bullet d \bullet \frac{f_{\text{cd}}}{f_{\text{yd}}} = \bullet 100\ cm \bullet \ cm \bullet \frac{\text{\ MPa}}{\text{MPa}} = \text{cm}^{2}$$
$$A_{S1,min} = \max\left\{ \begin{matrix}
0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\
0,0013 \bullet b \bullet d \\
\end{matrix} \right.\ $$
$$0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d = 0,26 \bullet \frac{\text{MPa}}{\text{MPa}} \bullet 100\ cm \bullet \text{\ cm}$$
0, 0013 • b • d = 0, 0013 • 100 cm •  cm
AS1, min = cm2
=AS1 > AS1, min=
$$n = \frac{A_{S1}}{A_{\varnothing}} = \frac{\text{cm}^{2}}{\text{cm}^{2}} = \approx$$
$$A_{\varnothing} = \frac{\pi \bullet^{2}}{4} = \text{cm}^{2}$$
$$r = \frac{100cm}{} \approx \text{\ cm}$$
$$A_{S1,prov} = \frac{100cm}{r} \bullet A_{\varnothing} = \frac{100\ cm}{\text{\ cm}} \bullet \text{cm}^{2} = \text{cm}^{2}$$
$$\rho_{L} = \frac{A_{S1,prov}}{b \bullet d} = \frac{\text{cm}^{2}}{100\ cm \bullet \text{\ cm}} = \ \%$$
4.2.2.  MBC
Zastotowanie zbrojenia :     ⌀=mm
$$\mu_{\text{eff}} = \frac{|M_{\text{AB}}|}{b \bullet d^{2} \bullet f_{\text{cd}}}$$
a1 = c + 0, 5 • ⌀ = cm + 0, 5 •  cm =  cm
d = hp − a1 =  cm −  cm = cm
$$\mu_{\text{eff}} = \frac{kNm \bullet 100}{100\ cm \bullet \left( \text{cm} \right)^{2} \bullet \text{\ MPa} \bullet 0,1} =$$
$\xi_{\text{eff}} = 1 - \sqrt{1 - 2 \bullet \mu_{\text{eff}}} = 1 - \sqrt{1 - 2 \bullet} =$
ξeff, lim=
ξeff < ξeff, lim
$$A_{S1} = \xi_{\text{eff}} \bullet b \bullet d \bullet \frac{f_{\text{cd}}}{f_{\text{yd}}} = \bullet 100\ cm \bullet \ cm \bullet \frac{\text{\ MPa}}{\text{MPa}} = \text{cm}^{2}$$
$$A_{S1,min} = \max\left\{ \begin{matrix}
0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\
0,0013 \bullet b \bullet d \\
\end{matrix} \right.\ $$
$$0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d = 0,26 \bullet \frac{\text{MPa}}{\text{MPa}} \bullet 100\ cm \bullet \text{\ cm}$$
0, 0013 • b • d = 0, 0013 • 100 cm •  cm
AS1, min = cm2
=AS1 > AS1, min=
$$n = \frac{A_{S1}}{A_{\varnothing}} = \frac{\text{cm}^{2}}{\text{cm}^{2}} = \approx$$
$$A_{\varnothing} = \frac{\pi \bullet^{2}}{4} = \text{cm}^{2}$$
$$r = \frac{100cm}{} \approx \text{\ cm}$$
$$A_{S1,prov} = \frac{100cm}{r} \bullet A_{\varnothing} = \frac{100\ cm}{\text{\ cm}} \bullet \text{cm}^{2} = \text{cm}^{2}$$
$$\rho_{L} = \frac{A_{S1,prov}}{b \bullet d} = \frac{\text{cm}^{2}}{100\ cm \bullet \text{\ cm}} = \ \%$$
4.3.1. MB=MC
Zastotowanie zbrojenia :     ⌀=mm
$$\mu_{\text{eff}} = \frac{|M_{B}|}{b \bullet d^{'2} \bullet f_{\text{cd}}}$$
$$d^{'} = d + \frac{b_{z}}{6} = \ cm + \frac{\text{cm}}{6} \approx \text{cm}$$
a1 = c + 0, 5 • ⌀ = cm + 0, 5 • cm = cm
d = hp − a1 = cm −  cm = cm
$$\mu_{\text{eff}} = \frac{|M_{B}|}{b \bullet d^{'2} \bullet f_{\text{cd}}} = \frac{||\ kNm \bullet 100}{100\ cm \bullet {(cm)}^{2} \bullet \text{\ MPa} \bullet 0,1} =$$
$$\xi_{\text{eff}} = 1 - \sqrt{1 - 2 \bullet \mu_{\text{eff}}} = 1 - \sqrt{1 - 2 \bullet} =$$
ξeff, lim=
ξeff < ξeff, lim
$${A_{S1}}^{a} = \xi_{\text{eff}} \bullet b \bullet d' \bullet \frac{f_{\text{cd}}}{f_{\text{yd}}} = \bullet 100\ cm \bullet \ cm \bullet \frac{\text{\ MPa}}{\text{MPa}} = \text{cm}^{2}$$
$$A_{S1,min} = \max\left\{ \begin{matrix}
0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d' \\
0,0013 \bullet b \bullet d' \\
\end{matrix} \right.\ $$
$$0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d' = 0,26 \bullet \frac{\text{MPa}}{\text{MPa}} \bullet 100\ cm \bullet \text{\ cm}$$
0, 0013 • b • d′ = 0, 0013 • 100 cm • cm
AS1, min=cm2
=AS1 > AS1, min=
$$n = \frac{A_{S1}}{A_{\varnothing}} = \frac{\text{cm}^{2}}{\text{cm}^{2}} = \approx$$
$$A_{\varnothing} = \frac{\pi \bullet^{2}}{4} = \text{cm}^{2}$$
$$r = \frac{100cm}{} \approx \text{\ cm}$$
$$A_{S1,prov} = \frac{100cm}{r} \bullet A_{\varnothing} = \frac{100\ cm}{\text{cm}} \bullet \text{cm}^{2} = \text{cm}^{2}$$
$$\rho_{L} = \frac{A_{S1,prov}}{b \bullet d'} = \frac{\text{cm}^{2}}{100\ cm \bullet \text{\ cm}} = \%$$
4.3.2.  MA=MD
Zastotowanie zbrojenia :     ⌀=mm
$$\mu_{\text{eff}} = \frac{|M_{A}|}{b \bullet d^{'2} \bullet f_{\text{cd}}}$$
$$d^{'} = d + \frac{b_{z}}{6} = \ cm + \frac{\text{cm}}{6} \approx \text{cm}$$
a1 = c + 0, 5 • ⌀ = cm + 0, 5 • cm = cm
d = hp − a1 = cm −  cm = cm
$$\mu_{\text{eff}} = \frac{|M_{A}|}{b \bullet d^{'2} \bullet f_{\text{cd}}} = \frac{\text{\ kNcm}}{100\ cm \bullet {(cm)}^{2} \bullet \text{\ MPa} \bullet 0,1} =$$
$$\xi_{\text{eff}} = 1 - \sqrt{1 - 2 \bullet \mu_{\text{eff}}} = 1 - \sqrt{1 - 2 \bullet} =$$
ξeff, lim=
ξeff < ξeff, lim
$${A_{S1}}^{a} = \xi_{\text{eff}} \bullet b \bullet d' \bullet \frac{f_{\text{cd}}}{f_{\text{yd}}} = \bullet 100\ cm \bullet \ cm \bullet \frac{\text{\ MPa}}{\text{MPa}} = \text{cm}^{2}$$
$$A_{S1,min} = \max\left\{ \begin{matrix}
0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d' \\
0,0013 \bullet b \bullet d' \\
\end{matrix} \right.\ $$
$$0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d' = 0,26 \bullet \frac{\text{MPa}}{\text{MPa}} \bullet 100\ cm \bullet \text{\ cm}$$
0, 0013 • b • d′ = 0, 0013 • 100 cm • cm
AS1, min = cm2
=AS1 < AS1, min=
$$n = \frac{A_{S1,min}}{A_{\varnothing}} = \frac{\text{cm}^{2}}{\text{cm}^{2}} = \approx$$
$$A_{\varnothing} = \frac{\pi \bullet^{2}}{4} = \text{cm}^{2}$$
$$r = \frac{100cm}{} \approx \text{\ cm}$$
$$A_{S1,prov} = \frac{100cm}{r} \bullet A_{\varnothing} = \frac{100\ cm}{\text{cm}} \bullet \text{cm}^{2} = \text{cm}^{2}$$
$$\rho_{L} = \frac{A_{S1,prov}}{b \bullet d'} = \frac{\text{cm}^{2}}{100\ cm \bullet \text{\ cm}} = \%$$
$$M_{\text{cr\ }} = W_{c} \bullet f_{\text{ctm}} = \frac{b \bullet h_{p}^{2}}{6} \bullet f_{\text{ctm}} = \frac{100cm \bullet \left( \text{\ cm} \right)^{2}}{6}\ \bullet \text{\ MPa}\ \bullet 0,1 = \text{\ kNcm\ }$$
|usrMAB| = |usrMCD| =  kNcm
=|usrMAB| ≤ Mcr =
|usrMBC|= kNcm
=|usrMBC| ≤ Mcr =
Zastotowanie zbrojenia :     ⌀=mm
$$\mu_{\text{eff}} = \frac{|{usrM}_{\text{BC}}|}{b \bullet d^{2} \bullet f_{\text{cd}}}$$
a1 = c + 0, 5 • ⌀ = cm + 0, 5 •  cm =  cm
d = hp − a1 =  cm −  cm = cm
$$\mu_{\text{eff}} = \frac{\text{kNcm}}{100\ cm \bullet \left( \text{cm} \right)^{2} \bullet \text{\ MPa} \bullet 0,1} =$$
$\xi_{\text{eff}} = 1 - \sqrt{1 - 2 \bullet \mu_{\text{eff}}} = 1 - \sqrt{1 - 2 \bullet} =$
ξeff, lim=
ξeff < ξeff, lim
$$A_{S1} = \xi_{\text{eff}} \bullet b \bullet d \bullet \frac{f_{\text{cd}}}{f_{\text{yd}}} = \bullet 100\ cm \bullet \ cm \bullet \frac{\text{\ MPa}}{\text{MPa}} = \text{cm}^{2}$$
$$A_{S1,min} = \max\left\{ \begin{matrix}
0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\
0,0013 \bullet b \bullet d \\
\end{matrix} \right.\ $$
$$0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d = 0,26 \bullet \frac{\text{MPa}}{\text{MPa}} \bullet 100\ cm \bullet \text{\ cm}$$
0, 0013 • b • d = 0, 0013 • 100 cm •  cm
AS1, min = cm2
=AS1 > AS1, min=
$$n = \frac{A_{S1}}{A_{\varnothing}} = \frac{\text{cm}^{2}}{\text{cm}^{2}} = \approx$$
$$A_{\varnothing} = \frac{\pi \bullet^{2}}{4} = \text{cm}^{2}$$
$$r = \frac{100cm}{} \approx \text{\ cm}$$
$$A_{S1,prov} = \frac{100cm}{r} \bullet A_{\varnothing} = \frac{100\ cm}{\text{\ cm}} \bullet \text{cm}^{2} = \text{cm}^{2}$$
$$\rho_{L} = \frac{A_{S1,prov}}{b \bullet d} = \frac{\text{cm}^{2}}{100\ cm \bullet \text{\ cm}} = \ \%$$
Beton C/
fck = MPa
$$f_{\text{cd}} = \frac{f_{\text{ck}}}{\gamma} = \frac{\text{MPa}}{1,5} = \text{\ MPa}$$
fctm = MPa
Ecm = GPa
Stal A III N
fyk = MPa
$$f_{\text{yd}} = \frac{f_{\text{yk}}}{\gamma_{s}} = \frac{\text{MPa}}{1,15} = \text{MPa}$$
Es = GPa = •103 MPa
$\varepsilon_{S1} = \frac{f_{\text{yd}}}{E_{s}} = \frac{}{\bullet 10^{3}} =$
ξeff, lim=
maxMAB = (k1•gk+0,8•k2•pk) • L2 = (0,080•+0,8•0,101•)•2
maxMAB=kNm
minMB=kNm
maxMB=kNm
⌀∞, to = 3Â
$$E_{c,eff} = \frac{E_{\text{cm}}}{1 + \varnothing_{\infty,to}} = \frac{}{1 + 3} = \text{GPa}$$
$$\alpha_{e,t} = \frac{E_{s}}{E_{c,eff}} = \frac{}{} =$$
$$A_{s1} = \frac{\pi \bullet \phi^{2}}{4} \bullet n = \frac{\pi \bullet^{2}}{4} \bullet = \text{cm}^{2}$$
$$S_{y} = \alpha_{e,t} \bullet A_{s1} \bullet d + b \bullet h_{p} \bullet \frac{h_{p}}{2} = \bullet \bullet + 100 \bullet \bullet \frac{}{2} = \mathbf{}\text{cm}^{3}$$
$${A_{\text{cs}} = \alpha_{e,t} \bullet A_{s1} + b \bullet h_{p} = \bullet + 100 \bullet = \mathbf{}\text{cm}^{2}\backslash n}{x_{I} = \frac{S_{y}}{A_{\text{cs}}} = \frac{\mathbf{}}{\mathbf{}} = \mathbf{}\text{cm}}$$
$$I_{I} = \frac{b \bullet x_{I}^{3}}{3} + \frac{b \bullet \left( h_{p} - x_{I} \right)^{3}}{3} + \alpha_{e,t} \bullet A_{s1} \bullet \left( d - x_{I} \right)^{2}$$
$$I_{I} = \frac{100 \bullet \mathbf{}^{3}}{3} + \frac{100 \bullet {( - \mathbf{})}^{3}}{3} + \bullet \bullet {( - \mathbf{})}^{2}$$
II = cm4
$$\rho = \frac{A_{s1}}{b \bullet d} = \frac{}{100 \bullet} =$$
$$x_{\text{II}} = d \bullet \left\lbrack \sqrt{\rho \bullet \alpha_{e,t} \bullet (2 + \rho \bullet \alpha_{e,t})} - \rho \bullet \alpha_{e,t} \right\rbrack$$
$$x_{\text{II}} = \bullet \left\lbrack \sqrt{\bullet \bullet (2 + \bullet )} - \bullet \right\rbrack = \text{cm}$$
$$I_{\text{II}} = \frac{b \bullet x_{\text{II}}^{3}}{3} + \alpha_{e,t} \bullet A_{s1} \bullet {(d - x_{\text{II}})}^{2} = \frac{100 \bullet^{3}}{3} + \ \bullet \bullet {( - )}^{2}$$
III =  cm4
$$\alpha_{k} = \frac{5}{48} \bullet \left( 1 - \frac{\left| M_{A} \right| + \left| M_{B} \right|}{10 \bullet \left| M_{\text{AB}} \right|} \right) = \frac{5}{48} \bullet \left( 1 - \frac{0 + \left| \right|}{10 \bullet \left| \mathbf{} \right|} \right) =$$
$$a_{I} = \alpha_{k} \bullet \frac{M_{Ed,qp} \bullet L_{\text{eff}}^{2}}{E_{c,\text{eff}} \bullet I_{I}} = \bullet \frac{\mathbf{}\mathbf{\bullet}^{2}}{\bullet} \bullet 10^{2} = m$$
$$a_{\text{II}} = \alpha_{k} \bullet \frac{M_{Ed,qp} \bullet L_{\text{eff}}^{2}}{E_{c,eff} \bullet I_{\text{II}}} = \bullet \frac{\mathbf{}\mathbf{\bullet}^{2}}{\bullet} \bullet 10^{2} = m$$
a = ζ • aII + (1−ζ) • aI
$$\zeta = 1 - \beta \bullet \left( \frac{M_{\text{cr}}}{M_{Ed,qp}} \right)^{2} = 1 - 0,5 \bullet \left( \frac{}{\mathbf{}\mathbf{\bullet}10^{2}} \right)^{2} =$$
β = 0, 5 dla obciazen dlugotrwalych
a = ζ • aII + (1−ζ) • aI = • + (1−) • =m
a = cm
$$\frac{L_{\text{eff}}}{250} = \frac{\bullet 10^{2}}{250} = \text{\ cm}$$
Leff ≤ a
maxMBB = (k1•gk+0, 8 • k2•pk) • L2 = (0,025•+0,8•0,075•)•2
maxMBB=kNm
$$A_{s1} = \frac{\pi \bullet \phi^{2}}{4} \bullet n = \frac{\pi \bullet \mathbf{}^{2}}{4} \bullet = \mathbf{}\text{cm}^{2}$$
$$S_{y} = \alpha_{e,t} \bullet A_{s1} \bullet d + b \bullet h_{p} \bullet \frac{h_{p}}{2} = \bullet \bullet + 100 \bullet \bullet \frac{}{2} = \mathbf{}\text{cm}^{3}$$
Acs = αe, t • As1 + b • hp = • + 100 • =cm2
$$x_{I} = \frac{S_{y}}{A_{\text{cs}}} = \frac{\mathbf{}}{} = \mathbf{}\text{cm}$$
$$I_{I} = \frac{b \bullet x_{I}^{3}}{3} + \frac{b \bullet \left( h_{p} - x_{I} \right)^{3}}{3} + \alpha_{e,t} \bullet A_{s1} \bullet \left( d - x_{I} \right)^{2}$$
$$I_{I} = \frac{100 \bullet \mathbf{}^{3}}{3} + \frac{100 \bullet {( - \mathbf{})}^{3}}{3} + \bullet \bullet {( - \mathbf{})}^{2}$$
II = cm4
$$\rho = \frac{A_{s1}}{b \bullet d} = \frac{}{100 \bullet} = \mathbf{}$$
$$x_{\text{II}} = d \bullet \left\lbrack \sqrt{\rho \bullet \alpha_{e,t} \bullet (2 + \rho \bullet \alpha_{e,t})} - \rho \bullet \alpha_{e,t} \right\rbrack$$
$x_{\text{II}} = \bullet \left\lbrack \sqrt{\mathbf{} \bullet \bullet \left( 2 + \mathbf{} \bullet \right)} - \mathbf{} \bullet \right\rbrack =$cm
$$I_{\text{II}} = \frac{b \bullet x_{\text{II}}^{3}}{3} + \alpha_{e,t} \bullet A_{s1} \bullet {(d - x_{\text{II}})}^{2} = \frac{100 \bullet \mathbf{}^{3}}{3} + \bullet \bullet {( - \mathbf{})}^{2}$$
$$\zeta = 1 - \beta \bullet \left( \frac{M_{\text{cr}}}{M_{Ed,qp}} \right)^{2} = 1 - 0,5 \bullet \left( \frac{}{\mathbf{\bullet}10^{2}} \right)^{2} = \mathbf{}$$
$$\alpha_{k} = \frac{5}{48} \bullet \left( 1 - \frac{\left| M_{B} \right| + \left| M_{B} \right|}{10 \bullet \left| M_{\text{BB}} \right|} \right) = \frac{5}{48} \bullet \left( 1 - \frac{\left| \right| + \left| \right|}{10 \bullet \left| \right|} \right) = \mathbf{}\backslash n$$
$$a_{I} = \alpha_{k} \bullet \frac{M_{Ed,qp} \bullet L_{\text{eff}}^{2}}{E_{c,\text{eff}} \bullet I_{I}} = \mathbf{} \bullet \frac{\mathbf{\bullet}^{2}}{\bullet \mathbf{}} \bullet 10^{2} = \mathbf{}m$$
$$a_{\text{II}} = \alpha_{k} \bullet \frac{M_{Ed,qp} \bullet L_{\text{eff}}^{2}}{E_{c,eff} \bullet I_{\text{II}}} = \mathbf{} \bullet \frac{\mathbf{\bullet}^{2}}{\bullet} \bullet 10^{2} = \mathbf{}m$$
a = ζ • aII + (1−ζ) • aI =  •  + (1−) •  = m = cm
$$\frac{L_{\text{eff}}}{250} = \frac{\bullet 10^{2}}{250} = \text{\ cm}$$
Leff ≤ a
Wk = Sr, max  • (εsm − εcm)
$$S_{r,max\ } = 1,7 \bullet (2 \bullet c + 0,1 \bullet \frac{\varnothing}{\rho_{p,eff}})$$
$$\rho_{p,eff}\mathbf{=}\frac{A_{s}}{A_{c,eff}}$$
Ac, eff = b • min{2,5•(h−d);(h−xII)/3}
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{\sigma_{s} - k_{t} \bullet \frac{f_{ct,eff}}{\rho_{p,eff}} \bullet (1 + \alpha_{e,t} \bullet \rho_{p,eff)}}{E_{s}} \geq 0,6 \bullet \frac{\sigma_{s}}{E_{s}}$$
$$\sigma_{s} = \alpha_{e,t} \bullet \frac{M_{Ed,qp}}{I_{\text{II}}} \bullet (d - x_{\text{II}})$$
kt = 0, 4 dla obciazen dlugotrwalychÂ
xII = cm
III =  cm4
$$\sigma_{s} = \alpha_{e,t} \bullet \frac{M_{Ed,qp}}{I_{\text{II}}} \bullet \left( d - x_{\text{II}} \right) = \bullet \frac{\mathbf{}\mathbf{\bullet}10^{2}}{} \bullet \left( - \right) = \mathbf{}\frac{\text{kN}}{\text{cm}^{2}}$$
Ac, eff = b • min{2,5•(hp−d);(hp−xII)/3}
Ac, eff = 100 • min{2,5•(−);(−)/3} = cm2
$$\rho_{p,eff}\mathbf{=}\frac{A_{s1}}{A_{c,eff}}\mathbf{=}\frac{}{}\mathbf{=}$$
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{\sigma_{s} - k_{t} \bullet \frac{f_{ct,eff}}{\rho_{p,eff}} \bullet \left( 1 + \alpha_{e,t} \bullet \rho_{p,eff} \right)}{E_{s}} \geq 0,6 \bullet \frac{\sigma_{s}}{E_{s}}$$
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{\mathbf{} - 0,4 \bullet \frac{\mathbf{}}{} \bullet 0,1 \bullet (1 + \bullet )}{\bullet 10^{2}} = \mathbf{}$$
$$0,6 \bullet \frac{\sigma_{s}}{E_{s}} = 0,6 \bullet \frac{\mathbf{}}{\bullet 10^{2}} = \mathbf{}$$
 ≥ 
$$S_{r,max\ } = 1,7 \bullet \left( 2 \bullet c + 0,1 \bullet \frac{\varnothing}{\rho_{p,eff}} \right) = 1,7 \bullet \left( 2 \bullet \bullet 10 + 0,1 \bullet \frac{}{} \right) = \mathbf{}\text{\ mm\ }$$
Wk = Sr, max  • (εsm − εcm)= •  =  mm
Wmax = mm
Wk≤Wmax
minMB=kNm
$$\sigma_{s} = \alpha_{e,t} \bullet \frac{M_{Ed,qp}}{I_{\text{II}}} \bullet \left( d - x_{\text{II}} \right) = \bullet \frac{\left| \right|\mathbf{\bullet}10^{2}}{} \bullet \left( - \right) = \frac{\text{kN}}{\text{cm}^{2}}$$
Ac, eff = b • min{2,5•(hp−d);(hp−xII)/3}
Ac, eff = 100 • min{2,5•(−);(−)/3} = cm2
$$\rho_{p,eff}\mathbf{=}\frac{A_{s1}}{A_{c,eff}}\mathbf{=}\frac{\mathbf{}}{}\mathbf{=}\mathbf{}$$
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{\sigma_{s} - k_{t} \bullet \frac{f_{ct,eff}}{\rho_{p,eff}} \bullet \left( 1 + \alpha_{e,t} \bullet \rho_{p,eff} \right)}{E_{s}} \geq 0,6 \bullet \frac{\sigma_{s}}{E_{s}}$$
$$\varepsilon_{\text{sm}} - \varepsilon_{\text{cm}} = \frac{- 0,4 \bullet \frac{\mathbf{}}{\mathbf{}} \bullet 0,1 \bullet (1 + \bullet \mathbf{})}{\bullet 10^{2}} = \text{mm}$$
$$0,6 \bullet \frac{\sigma_{s}}{E_{s}} = 0,6 \bullet \frac{}{\bullet 10^{2}} = \text{mm}\backslash n$$
≥
$$S_{r,max\ } = 1,7 \bullet \left( 2 \bullet c + 0,1 \bullet \frac{\varnothing}{\rho_{p,eff}} \right) = 1,7 \bullet \left( 2 \bullet \bullet 10 + 0,1 \bullet \frac{}{\mathbf{}} \right) = \text{\ mm\ }$$
Wk = Sr, max  • (εsm − εcm)= • = mm
Wmax = mm
Wk≤Wmax