Zał. 3. Zestawienie wartości wyrównanych długości
Bok 1-2
odległość | Lp. | Li [m] | Vi [mm] | Vi2 [mm2] |
---|---|---|---|---|
1-2 | 1 | 25,258 | -1,4 | 1,96 |
2 | 25,260 | -3,4 | 11,56 | |
3 | 25,257 | -0,4 | 0,16 | |
4 | 25,256 | 0,6 | 0,36 | |
5 | 25,256 | 0,6 | 0,36 | |
6 | 25,257 | -0,4 | 0,16 | |
7 | 25,255 | 1,6 | 2,56 | |
8 | 25,256 | 0,6 | 0,36 | |
9 | 25,256 | 0,6 | 0,36 | |
10 | 25,255 | 1,6 | 2,56 |
∑=0 ∑=20,4
$$L_{o} = \frac{\sum_{}^{}L_{i}}{n} = 25,2566\ \lbrack m\rbrack$$
$$m = \pm \sqrt{\frac{\sum_{}^{}{V_{i}V_{i}}}{n - 1}} = 1,506\ \lbrack mm\rbrack$$
$$m_{0} = \frac{m}{\sqrt{n}} = \pm 0,5\ \left\lbrack \text{mm} \right\rbrack$$
L1 − 2 = 25, 257[m] ± 0, 5 [mm]
Bok 2-3
odległość | Lp. | Li [m] | Vi [mm] | Vi2 [mm2] |
---|---|---|---|---|
2-3 | 1 | 26,532 | 1,8 | 3,24 |
2 | 26,534 | -0,2 | 0,04 | |
3 | 26,533 | 0,8 | 0,64 | |
4 | 26,533 | 0,8 | 0,64 | |
5 | 26,534 | -0,2 | 0,04 | |
6 | 26,533 | 0,8 | 0,64 | |
7 | 26,535 | -1,2 | 1,44 | |
8 | 26,534 | -0,2 | 0,04 | |
9 | 26,535 | -1,2 | 1,44 | |
10 | 26,535 | -1,2 | 1,44 |
∑=0 ∑=9,6
$$L_{o} = \frac{\sum_{}^{}L_{i}}{n} = 26,5338\ \lbrack m\rbrack$$
$$m = \pm \sqrt{\frac{\sum_{}^{}{V_{i}V_{i}}}{n - 1}} = 1,033\ \lbrack mm\rbrack$$
$$m_{0} = \frac{m}{\sqrt{n}} = \pm 0,3\ \left\lbrack \text{mm} \right\rbrack$$
L2 − 3 = 26, 5338[m] ± 0, 3 [mm]
Bok 3-4
odległość | Lp. | Li [m] | Vi [mm] | Vi2 [mm2] |
---|---|---|---|---|
3-4 | 1 | 18,588 | -0,1 | 0,01 |
2 | 18,590 | -2,1 | 4,41 | |
3 | 18,589 | -1,1 | 1,21 | |
4 | 18,588 | -0,1 | 0,01 | |
5 | 18,588 | -0,1 | 0,01 | |
6 | 18,587 | 0,9 | 0,81 | |
7 | 18,587 | 0,9 | 0,81 | |
8 | 18,587 | 0,9 | 0,81 | |
9 | 18,587 | 0,9 | 0,81 | |
10 | 18,588 | -0,1 | 0,01 |
∑=0 ∑=8,9
$$L_{o} = \frac{\sum_{}^{}L_{i}}{n} = 18,5879\ \lbrack m\rbrack$$
$$m = \pm \sqrt{\frac{\sum_{}^{}{V_{i}V_{i}}}{n - 1}} = 0,994\ \lbrack mm\rbrack$$
$$m_{0} = \frac{m}{\sqrt{n}} = \pm 0,3\ \left\lbrack \text{mm} \right\rbrack$$
L3 − 4 = 18, 588[m] ± 0, 3 [mm]
Bok 4-5
odległość | Lp. | Li [m] | Vi [mm] | Vi2 [mm2] |
---|---|---|---|---|
4-5 | 1 | 30,460 | -3,7 | 13,69 |
2 | 30,456 | 0,3 | 0,09 | |
3 | 30,457 | -0,7 | 0,49 | |
4 | 30,456 | 0,3 | 0,09 | |
5 | 30,457 | -0,7 | 0,49 | |
6 | 30,457 | -0,7 | 0,49 | |
7 | 30,456 | 0,3 | 0,09 | |
8 | 30,454 | 2,3 | 5,29 | |
9 | 30,455 | 1,3 | 1,69 | |
10 | 30,455 | 1,3 | 1,69 |
∑=0 ∑=24,1
$$L_{o} = \frac{\sum_{}^{}L_{i}}{n} = 30,4563\ \lbrack m\rbrack$$
$$m = \pm \sqrt{\frac{\sum_{}^{}{V_{i}V_{i}}}{n - 1}} = \ 1,636\lbrack mm\rbrack$$
$$m_{0} = \frac{m}{\sqrt{n}} = \pm 0,5\ \left\lbrack \text{mm} \right\rbrack$$
L4 − 5 = 30, 457[m] ± 0, 5 [mm]
Bok 5-1
odległość | Lp. | Li [m] | Vi [mm] | Vi2 [mm2] |
---|---|---|---|---|
5-1 | 1 | 32,252 | -1,9 | 3,67 |
2 | 32,250 | 0,1 | 0,01 | |
3 | 32,252 | -1,9 | 3,67 | |
4 | 32,251 | -0,9 | 0,81 | |
5 | 32,250 | 0,1 | 0,01 | |
6 | 32,250 | 0,1 | 0,01 | |
7 | 32,249 | 1,1 | 1,21 | |
8 | 32,250 | 0,1 | 0,01 | |
9 | 32,248 | 2,1 | 4,41 | |
10 | 32,249 | 1,1 | 1,21 |
∑=0 ∑=15,02
$$L_{o} = \frac{\sum_{}^{}L_{i}}{n} = 30,2501\ \lbrack m\rbrack$$
$$m = \pm \sqrt{\frac{\sum_{}^{}{V_{i}V_{i}}}{n - 1}} = 1,292\ \lbrack mm\rbrack$$
$$m_{0} = \frac{m}{\sqrt{n}} = \pm 0,4\ \left\lbrack \text{mm} \right\rbrack$$
L5 − 1 = 30, 250[m] ± 0, 4 [mm]