$y \leq \sum_{i = 1}^{n}\sqrt[3]{\frac{x^{2}}{x - 1}}$
$$\sigma = \sqrt{\frac{\sum_{}^{}\left( x_{i} - \overset{\overline{}}{j} \right)^{}}{n*\left( v - j \right)}}$$
$$y = - \frac{123 - \alpha}{\sqrt{\frac{7}{12}}\alpha + \frac{12\ }{34}\alpha + \sqrt{\frac{12}{56}c}} + \frac{235 - b}{\left( \sqrt{\frac{23}{1345}}\alpha^{2\ \frac{a}{c}} + \frac{12}{34}b + \sqrt{\frac{12}{56}}c \right)^{2}}$$
$$\boxed{\overline{X} = \frac{\sum_{i - l}^{t}x_{m}}{n}}$$