$\left\{ \begin{matrix} x = r\sin{\theta\cos\varphi} \\ y = r\sin\theta\sin\varphi \\ z = \cos\theta \\ \end{matrix} \right.\ $
$\left\{ \begin{matrix} x = r\cos\varphi \\ y = r\sin\varphi \\ \end{matrix} \right.\ $
jakobian : r2sinθ
$\left\{ \begin{matrix} x = r\cos\varphi \\ y = r\sin\varphi \\ z = z \\ \end{matrix} \right.\ $
$P_{p} = \iint_{D}^{}\sqrt{1 + \left( \frac{\partial f}{\partial x} \right)^{2} + \left( \frac{\partial f}{\partial y} \right)^{2}}\text{dxdy}$
kąt między wektorami: $\cos\left( < \overrightarrow{a},\overrightarrow{b} \right) = \frac{\overrightarrow{a} \circ \overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}$
$6a.\ \int_{}^{}{e^{\text{ax}}dx = \frac{1}{a}e^{\text{ax}}}$||7a. $\int_{}^{}{\sin\text{ax}dx = - \frac{1}{a}\cos\text{ax}}$||
$8a.\ \int_{}^{}{\cos\text{ax}dx = \frac{1}{a}\sin\text{ax}}$