SPRĘŻYNY:
k1-2=k1+k2 $\frac{1}{k_{1 - 2}} = \frac{1}{k_{1}} + \frac{1}{k_{2}} = \frac{k_{1}{+ \ k}_{2}}{k_{1}k_{2}}$
$$k_{1 - 2} = \frac{k_{1}k_{2}}{k_{1} + k_{2}}$$
Równanie k równoległe + F0i = k
Równanie równoległe + szeregowe
$f = \frac{F}{k}$
ŚREDNICA WAŁKA:
$M_{O}\lbrack kNm\rbrack = \frac{1}{2}F_{O}d = > \ F_{O}\lbrack kN\rbrack = \frac{2M_{O}}{d}$ $M_{\text{zast}}\lbrack kNm\rbrack = \sqrt{{M_{g}}^{2} + \frac{3}{4}{M_{s}}^{2}}$
$d_{w}\lbrack mm\rbrack = \sqrt[3]{\frac{32M_{\text{zast}}\lbrack kNm\rbrack}{\pi\delta_{\text{dop}}\lbrack MPa\rbrack}10^{6}}$ $F_{01/02} = \frac{2M_{O}}{d_{1/2}}$
ŚREDNICA CZOPA:
Zginanie: $M_{g} = \frac{1}{2}Fl;F = \frac{\pi}{4}\text{ld}\rho_{m};\ W_{z} = \frac{\pi}{32}d^{3}$
$$\delta_{\text{dop}} \geq \frac{M_{g}}{W_{z}} = > d \geq \sqrt[3]{\frac{16F}{\pi\delta_{\text{dop}}}l^{\frac{1}{3}}}$$
Nacisk: $\rho_{m} \leq \rho_{\text{dop}};\ \rho_{\text{dop}} \geq \frac{4F}{\text{πl}\rho_{\text{dop}}};d \geq \frac{4F}{\pi\rho_{\text{dop}}}\frac{1}{l} = > d \geq \frac{wartosc\ z\ ulamka}{l}$
Ścinanie: $\frac{4}{3}\frac{F}{A_{0}} \leq \tau_{\text{dop}} = > d \geq \sqrt{\frac{16}{3\pi}\ \frac{F}{\tau_{\text{dop}}}}$
SPRĘŻYNY:
k1-2=k1+k2 $\frac{1}{k_{1 - 2}} = \frac{1}{k_{1}} + \frac{1}{k_{2}} = \frac{k_{1}{+ \ k}_{2}}{k_{1}k_{2}}$
$$k_{1 - 2} = \frac{k_{1}k_{2}}{k_{1} + k_{2}}$$
Równanie k równoległe + F0i = k
Równanie równoległe + szeregowe
$f = \frac{F}{k}$
ŚREDNICA WAŁKA:
$M_{O}\lbrack kNm\rbrack = \frac{1}{2}F_{O}d = > \ F_{O}\lbrack kN\rbrack = \frac{2M_{O}}{d}$ $M_{\text{zast}}\lbrack kNm\rbrack = \sqrt{{M_{g}}^{2} + \frac{3}{4}{M_{s}}^{2}}$
$d_{w}\lbrack mm\rbrack = \sqrt[3]{\frac{32M_{\text{zast}}\lbrack kNm\rbrack}{\pi\delta_{\text{dop}}\lbrack MPa\rbrack}10^{6}}$ $F_{01/02} = \frac{2M_{O}}{d_{1/2}}$
ŚREDNICA CZOPA:
Zginanie: $M_{g} = \frac{1}{2}Fl;F = \frac{\pi}{4}\text{ld}\rho_{m};\ W_{z} = \frac{\pi}{32}d^{3}$
$$\delta_{\text{dop}} \geq \frac{M_{g}}{W_{z}} = > d \geq \sqrt[3]{\frac{16F}{\pi\delta_{\text{dop}}}l^{\frac{1}{3}}}$$
Nacisk: $\rho_{m} \leq \rho_{\text{dop}};\ \rho_{\text{dop}} \geq \frac{4F}{\text{πl}\rho_{\text{dop}}};d \geq \frac{4F}{\pi\rho_{\text{dop}}}\frac{1}{l} = > d \geq \frac{wartosc\ z\ ulamka}{l}$
Ścinanie: $\frac{4}{3}\frac{F}{A_{0}} \leq \tau_{\text{dop}} = > d \geq \sqrt{\frac{16}{3\pi}\ \frac{F}{\tau_{\text{dop}}}}$