CIĄGI – rozwiązanie zadań

CIĄGI – rozwiązanie zadań

Zadanie 1

  1. an = 2n + 1


an + 1 = 2(n+1) + 1 = 2n + 2 + 1 = 2n + 3


an + 1 − an = 2n + 3 − 2n + 3 = 2 > 0


ciag rosnacy

  1. $a_{n} = \frac{2n + 3}{n + 1}$


$$a_{n + 1} = \frac{2\left( n + 1 \right) + 3}{\left( n + 1 \right) + 1} = \frac{2n + 2 + 3}{n + 2} = \frac{2n + 5}{n + 2}$$


$$a_{n + 1} - a_{n} = \frac{2n + 5}{n + 2} - \frac{2n + 3}{n + 1} = \frac{\left( 2n + 5 \right)\left( n + 1 \right) - \left( 2n + 3 \right)(n + 2)}{\left( n + 1 \right)(n + 2)} = \frac{\left( 2n^{2} + 2n + 5n + 5 \right) - ({2n}^{2} + 4n + 3n + 6)}{\left( n + 1 \right)(n + 2)} = \frac{2n^{2} + 2n + 5n + 5 - 2n^{2} - 4n - 3n - 6}{\left( n + 1 \right)(n + 2)} = \frac{2n^{2} - 2n^{2} + 7n - 7n + 5 - 6}{\left( n + 1 \right)(n + 2)} = \frac{- 1}{\underset{n \in N}{}} < 0$$


ciag malejacy

Zadanie 2


a2 = 4


a4 = 10


an =  ?


an = a1 + (n−1)r


a2 = a1 + (2−1)r


a4 = a1 + (4−1)r


$$\left\{ \begin{matrix} 4 = a_{1} + r \\ 10 = a_{1} + 3r \\ \end{matrix} \right.\ $$


−6 = −2r


r = 3


4 = a1 + 3


a1 = 1


$$\left\{ \begin{matrix} a_{1} = 1 \\ r = 3 \\ \end{matrix} \right.\ $$


an = 1 + (n−1)3


an = 1 + 3n − 3


an = 3n − 2


S5 = ?


$$S_{5} = \frac{a_{1} + a_{5}}{2}*5$$


a5 = a1 + 4r


a5 = 1 + 12 = 13


$$S_{5} = \frac{1 + 13}{2}*5 = 35$$

Zadanie 3


3,  6,  9,  12,  …, 99


r = 3


an = 99


a1 = 3


an = a1 + (n−1)r


99 = 3 + (n−1) * 3  |  : 3


33 = 1 + n − 1


n = 33


$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$


$$S_{33} = \frac{3 + 99}{2}*33$$


S33 = 1683


S99 = ?


$$S_{99} = \frac{1 + 99}{2}*99 = 4950$$


S99 − S33 = 4950 − 1683 = 3267

Zadanie 4


1 + 3 + 5 + … + x = 81


$$\frac{r = 2}{\begin{matrix} a_{1} = 1 \\ a_{n} = x \\ \end{matrix}}$$


Sn = 81


$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$


an = a1 + (n−1)r


x = 1 + (n−1)2


x − 1 = 2(n−1) |  : 2


$$\frac{x - 1}{2} = n - 1$$


$$n = \frac{x - 1}{2} + 1$$


$$n = \frac{x - 1 + 2}{2}$$


$$n = \frac{x + 1}{2}$$


$$81 = \frac{1 + x}{2}*\frac{1 + x}{2}\ \ \ |*4$$


$$324{= (1 + x)}^{2}\ \ \ |\sqrt{}\ $$


18 = |1+x|


18 = 1 + x


x = 17


−18 = 1 + x


x = −19   ∉   D


Odpowiedz :   x = 17

Zadanie 5


a5 = 16


a2 = 2


an = a1 * qn − 1


a5 = a1 * q5 − 1


16 = a1 * q4


a2 = a1 * q1


2 = a1q


$$\left\{ \begin{matrix} 2 = a_{1}q \\ 2 = {2a}_{1} \\ \end{matrix} \right.\ $$


a1 = 1


$$\left\{ \begin{matrix} 16 = a_{1}*q^{4} \\ 2 = a_{1}q \\ \end{matrix} \right.\ $$


$$8 = \frac{a_{1}q^{4}}{a_{1}q}$$


8 = q3


q = 2


$$a_{n} = 1*2^{n - 1} = 2^{n}*2^{- 1} = \frac{1}{2}*2^{n}$$

Zadanie 6


$$\underset{\begin{matrix} ciag \\ \text{arytmetyczny} \\ \end{matrix}}{}8$$


$$x,\ \underset{\begin{matrix} ciag \\ \text{geometryczny} \\ \end{matrix}}{}$$


$$\left\{ \begin{matrix} y - 2 = 2 - x \\ \frac{8}{y} = \frac{y}{2} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} y = 4 - x \\ y^{2} = 16 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} y = 4 - x \\ y_{1} = 4\ \ \land \ \ \ y_{2} = - 4 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} x = 4 - y \\ y^{2} = 16 \\ \end{matrix} \right.\ $$


x1 = 4 − y1


x1 = 4 − 4


x1 = 0


x2 = 4 − y2


x2 = 4 + 4


x2 = 8


$$\left\{ \begin{matrix} x_{1} = 0 \\ y_{1} = 4 \\ \end{matrix}\ \ \ \ \ \vee \ \ \ \ \ \left\{ \begin{matrix} x_{2} = 8 \\ y_{2} = - 4 \\ \end{matrix} \right.\ \right.\ $$

Zadanie 7


2x1, 2x2, 2x3


x1 + x2 + … + x10 = 110


x7 = 14


a3 =  ?


$$\frac{2^{x_{3}}}{2^{x_{2}}} = \frac{2^{x_{2}}}{2^{x_{1}}}$$


2x3 − x2 = 2x2 − x1


funkcja roznowartosciowa


x3 − x2 = x2 − x1


x7 = x1 + 6r


14 = x1 + 6r


14 − x1 = 6r


$$r = \frac{14 - x_{1}}{6}$$


x10 = x1 + 9r


$$x_{10} = x_{1} + 9*\frac{14 - x_{1}}{6}$$


$$x_{10} = x_{1} + \frac{3}{2}\left( 14 - x_{1} \right)$$


$$x_{10} = x_{1} + 21 - \frac{3}{2}x_{1}$$


$$x_{10} = 21 - \frac{1}{2}x_{1}$$


$$S_{10} = \frac{x_{1} + x_{10}}{2}*10$$


$$110 = \frac{x_{1} + 21 - \frac{1}{2}x_{1}}{2}*10$$


$$110 = 5\left( x_{1} + 21 - \frac{1}{2}x_{1} \right)\ \ \ |\ :5$$


$$22 = \ \frac{1}{2}x_{1} + 21$$


$$22 - 21 = \frac{1}{2}x_{1}$$


$$1 = \frac{1}{2}x_{1}\ \ \ |*2$$


2 =  x1


x1 = 2


$$r = \frac{14 - x_{1}}{6}$$


$$r = \frac{14 - 2}{6} = 2$$


x3 = x1 + 2r


x3 = 2 + 4


x3 = 6


Odpowiedz :    a3 = 26 = 64

Zadanie 8


a1, a2, a3, …


$$\frac{a_{3}}{a_{2}} = \frac{a_{2}}{a_{1}}$$


a3a1 = a2a2


a3a1 = a22


$$q = \frac{a_{3}}{a_{2}}$$


$$q = \frac{a_{2}}{a_{1}}$$


$$q = \frac{a_{n} + 1}{a_{n}}$$


a12 + a22 = a32


an = a1 * qn − 1


a3 = a1 * q2


a2 = a1q


a12 + a1q2 = a12q4   |  : a1


1 + q2 = q4


q4 − q2 − 1 = 0


q2 = t      t > 0


t2 − t − 1 = 0


=1 + 4 = 5


$$\sqrt{} = \sqrt{5}$$


$$t_{1} = \frac{1 - \sqrt{5}}{2}\ \ \ \notin D$$


$$t_{2} = \frac{1 + \sqrt{5}}{2}$$


$$q^{2} = \frac{1 + \sqrt{5}}{2}$$


$$q = \sqrt{\frac{1 + \sqrt{5}}{2}}$$

Zadanie 9


a5a11 = 4


a1a2a3a15 =  ?


a5 = a1q4


a11 = a1q10


a1q4 * a1q10 = 4


a12 * q14 = 4


$$a_{1}a_{2}a_{3}\ldots a_{15} = a_{1}*\underset{a_{2}}{}*\underset{a_{3}}{}*\underset{a_{4}}{}*\ldots*\underset{a_{15}}{} = a_{1}^{15}q^{1 + 2 + 3 + 4 + \ldots + 14}$$


$$S_{14} = \frac{1 + 14}{2}*14 = \frac{15}{2}*14 = \frac{15*14}{2}$$


$$a_{1}^{15}q\frac{15*14}{2}{= \underset{4}{}}^{7,5} = 4^{7,5}$$

Zadanie 10


$$\left\{ \begin{matrix} a_{1} = 2 \\ a_{n + 1} = \frac{a_{n}}{a_{n + 1}} \\ \end{matrix} \right.\ $$


$$a_{2} = \frac{a_{1}}{a_{1 + 1}}$$


$$a_{2} = \frac{2}{2 + 1}$$


$$a_{2} = \frac{2}{3}$$


$$a_{3} = \frac{a_{2}}{a_{2 + 1}}$$


$$a_{3} = \frac{\frac{2}{3}}{\frac{2}{3} + 1} = \frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{3}*\frac{3}{5} = \frac{2}{5}$$


$$Odpowiedz:\ \ \ 2,\ \frac{2}{3},\ \frac{2}{5},\ldots$$

Zadanie 11


$$S_{n} = \frac{2^{n}}{n + 1}$$


S1 = a1


$$S_{1} = \frac{2^{1}}{1 + 1} = \frac{2}{2}$$


a1 = 1


S2 = a1 + a2


$$S_{2} = \frac{2^{2}}{2 + 1} = \frac{4}{3}$$


$$1 + a_{2} = \frac{4}{3}$$


$$a_{2} = \frac{1}{3}$$


a1 + a2 + a3 = S3


$$S_{3} = \frac{2^{3}}{3 + 1} = \frac{8}{4} = 2$$


$$1 + \frac{1}{3} + a_{3} = 2$$


$$a_{3} = \frac{2}{3}$$


$$Odpowiedz:\ \ \ 1,\ \frac{1}{3},\ \frac{2}{3},\ \ldots$$

Zadanie 12


$$\sqrt{2} + \sqrt{3},\ - 1,\ \sqrt{3} - \sqrt{2}$$


$$\frac{- 1}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{3} - \sqrt{2}}{- 1}$$


$$1 = \left( \sqrt{2} + \sqrt{3} \right)\left( \sqrt{3} - \sqrt{2} \right)$$


$$1 = \left( \sqrt{3} - \sqrt{2} \right)\left( \sqrt{3} + \sqrt{2} \right)$$


1 = 3 − 2


1 = 1


L = P

Zadanie 13


3 + 9 + 15 + … + x = 363


a1 = 3


a2 = 9


an = x


r = 6


Sn = 363


an = a1 + (n−1)r


x = 3 + (n−1)6


x = 3 + 6n − 6


x = 6n − 3


$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$


$$363 = \frac{3 + 6n - 3}{2}*n$$


$$363 = \frac{{6n}^{2}}{2}$$


726 = 6n2


121 = n2


n = 11     ∨      n = −11


x = 6n − 3


x = 6 * 11 − 3


x = 66 − 3 = 63


x = 6 * (−11) − 3


x = −66 − 3 = −69  ∉ D

Zadanie 14


10,  11,  12,  …, 99


r = 4


$$\frac{99}{4} = 24\frac{3}{4}$$


$$\frac{98}{4} = 24\frac{2}{4}$$


$$\frac{97}{4} = 23\frac{1}{3}$$


$$\frac{10}{4} = 2\frac{2}{4}$$


$$\frac{11}{4} = 2\frac{3}{4}$$


$$\frac{12}{4} = 3$$


$$\frac{13}{4} = 3\frac{1}{4}$$


$$\frac{14}{4} = 3\frac{2}{4}$$


$$\frac{15}{4} = 3\frac{3}{4}$$


$$\frac{16}{4} = 4$$


$$\frac{17}{4} = 4\frac{1}{4}$$


a1 = 13


a2 = 17


an = 97


an = a1 + (n−1)r


97 = 13 + (n−1)4


97 = 13 + 4n − 4


97 = 4n + 9


88 = 4n


n = 22


Sn =  ?


$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$


$$S_{22} = \frac{13 + 97}{2}*22$$


$$S_{22} = \frac{110}{2}*22$$


S22 = 110 * 11


S22 = 1210

Zadanie 15


a,  b,  c


ciag geometryczny


a1 + a1q,  a1q2


loga + logb + logc


ciag arytmetyczny


loga,  logb,  logc


logb − loga = logc − logb


$$\log\frac{b}{a} = \log\frac{c}{b}$$


funkcja roznowartosciowa


$$\frac{b}{a} = \frac{c}{b}$$

Zadanie 16


0, (3) = 0, 3333…=0, 3 + 0, 03 + 0, 003 + …


a1 = 0, 3


a2 = 0, 03


$$q = \frac{0,03}{0,3} = 0,1$$


$$S = \frac{a_{1}}{1 - q}$$


$$S = \frac{0,3}{1 - 0,1} = \frac{0,3}{0,9} = \frac{1}{3}$$

Zadanie 17


$$2,\left( 12 \right) = 2 + 0,\left( 12 \right) = 2 + 0,12121212\ldots = 2 + \underset{ciag}{}$$


a1 = 0, 12


$$q = \frac{0,0012}{0,12} = \frac{1}{100}$$


$$S = \frac{0,12}{1 - 0,01} = \frac{0,12}{0,99} = \frac{12}{99} = \frac{4}{33}$$


$$2 + \frac{4}{33} = 2\frac{4}{33}$$

Zadanie 18


$$\overset{*}{\overbrace{x}} - \underset{+}{} + \overset{*}{\overbrace{\frac{x^{2}}{2}}} - \underset{+}{} + \overset{*}{\overbrace{\frac{x^{3}}{4}}} - \underset{+}{} + \ldots = 1$$


x ≠ 0


$$q = \frac{- \frac{1}{2x}}{x} = \frac{- 1}{2x^{2}}$$


$$q = \frac{x^{2}}{2}*\left( - \frac{2x}{1} \right) = - x^{3}$$


ciag*


$$q = \frac{\frac{x^{2}}{2}}{x} = \frac{x^{2}}{2x} = \frac{x}{2}$$


q ∈ (−1,1)


$$- 1 < \frac{x}{2} < 1\ \ |*2$$


−2 < x < 2


x ∈ (−2,2) −  {0}


ciag+


$$q'' = - \frac{1}{4x}*( - \frac{2x}{1}) = \frac{1}{2}$$


$$S^{'} = \frac{x}{1 - \frac{x}{2}} = \frac{x}{\frac{2 - x}{2}} = \frac{2x}{2 - x}$$


$$S^{''} = \frac{- \frac{1}{2x}}{1 - \frac{1}{2}} = \frac{- \frac{1}{2x}}{\frac{1}{2}} = \frac{- 2}{2x} = - \frac{1}{x}$$


S + S″=1


$$\frac{2x}{2 - x} - \frac{1}{x} = 1\ \ \ \ |*\left( 2 - x \right)x$$


2x2 − (2−x) = (2−x)x


2x2 + x − 2 = 2x − x2


3x2 − x − 2 = 0


=1 + 24 = 25


$$\sqrt{} = 5$$


$$x_{1} = \frac{1 - 5}{6} = \frac{- 4}{6} = \frac{- 2}{3}$$


$$x_{2} = \frac{1 + 5}{6} = 1$$

Zadanie 19


a1,  a1q,  a1q2


a1 + a1q + a1q2 + … = 12


a12 + a12q2 + a12q4 + … = 48


$$\left\{ \begin{matrix} \frac{a_{1}}{1 - q} = 12 \\ \frac{a_{1}^{2}}{1 - q^{2}} = 48 \\ \end{matrix} \right.\ $$


a1 = 6


a1 = 0


$$q' = \frac{1}{2}$$


q = 3


$$Odpowiedz:\ \ 6,\ 3,\ \frac{3}{2}.$$

Zadanie 20


$$\frac{a\sqrt{3}}{2}*\frac{\sqrt{3}}{2} = \frac{3a}{4} = \frac{3}{4}a$$


$$S = \frac{a_{1}}{1 - q}$$


$$P_{1} = \frac{a^{2}\sqrt{3}}{4}$$


$$P_{2} = \frac{{(\frac{a\sqrt{3}}{2})}^{2}\sqrt{3}}{4}\ $$


$$P_{3} = \frac{\left( \frac{3}{4}a \right)^{2}\sqrt{3}}{4} = \frac{9a^{2}\sqrt{3}}{64}$$


$$q = \frac{3}{4}$$


$$S = \frac{\frac{a^{2}\sqrt{3}}{4}}{\frac{1}{4}} = a^{2}\sqrt{3}$$

Zadanie 21


zalozenie 


k − 2 > 0


k > 2


a2 = a1 * (k−2)


a2 = 2 * (k−2)


a3 = 2 * (k − 2) * (k − 2)


q ∈ (−1, 1)


$$q = \frac{a_{3}}{a_{2}} = \frac{a_{2}}{a_{1}}$$


$$q = \frac{2\operatorname{}\left( k - 2 \right)}{2} = \operatorname{}\left( k - 2 \right)$$


−1 < (k − 2) < 1


(k−2) < 1


(k−2) < log21


k − 2 < 2


k < 4


(k−2) > −1


(k−2) > 2 − 1


f ↗


$$k - 2 > \frac{1}{2}$$


$$k > 2\frac{1}{2}$$


$$k > \frac{5}{2}$$


$$Odpowiedz:\ \ \ k\ \in \left( \frac{5}{2},\ 4 \right)$$

Zadanie 22


3, 2(35) = 3, 235353535…


$$3 + 0,2 + \underset{\text{szereg}}{}$$


a1 = 0, 035


a2 = 0, 00035


$$q = \frac{0,00035}{0,035} = \frac{35}{3500} = \frac{1}{100}$$


$$S = \frac{a_{1}}{1 - q}$$


$$S = \frac{0,035}{1 - \frac{1}{100}} = \frac{0,035}{0,99} = \frac{35}{990} = \frac{7}{198}$$


$$3 + 0,2 + \frac{7}{198} = 3,2\left( 35 \right)$$


$$3,2\left( 35 \right) = \frac{30}{10} + \frac{2}{10} + \frac{7}{198} = \frac{32}{10} + \frac{7}{198} = \frac{32*198 + 70}{1980} = \frac{6336 + 70}{1980} = \frac{6406}{1980}$$

Zadanie 23


$$15\left( 1 + \frac{2}{x} + \frac{4}{x^{2}} + \ldots \right) = 8\left( 1 + \frac{1}{x^{2}} + \frac{1}{x^{4}} + \ldots \right)$$


a1 = 1


$$a_{2} = \frac{2}{x}$$


$$a_{3} = \frac{4}{x^{2}}$$


$$q = \frac{4}{x^{2}}*\frac{x}{2} = \frac{2}{x}$$


$$S = \frac{1}{1 - \frac{2}{x}}$$


a1 = 1


$$a_{2} = \frac{1}{x^{2}}$$


$$a_{3} = \frac{1}{x^{4}}$$


$$q = \frac{1}{x^{2}}$$


$$S = \frac{1}{1 - \frac{1}{x^{2}}}$$


$$15\left( \frac{1}{1 - \frac{2}{x}} \right) = 8\left( \frac{1}{1 - \frac{1}{x^{2}}} \right)$$


$$\frac{15}{1 - \frac{2}{x}} = \frac{8}{1 - \frac{1}{x^{2}}}$$


$$15 - \frac{15}{x^{2}} = 8 - \frac{16}{x}$$


$$- \frac{15}{x^{2}} + \frac{16}{x} + 7 = 0\ \ |*x^{2}$$


−15 + 16x + 7x2 = 0


7x2 + 16x − 15 = 0


=256 + 4 * 7 * 15 = 676


$$\sqrt{} = 26$$


$$x_{1} = \frac{- 16 - 26}{14} = \frac{42}{14} = \frac{21}{7} = 3$$


$$x_{2} = \frac{- 16 + 26}{14} = \frac{10}{14} = \frac{5}{7}$$

Zadanie 24


P1 + P2 + P3 + …


$$R_{1} = \frac{2}{3}h$$


$$h = \frac{a\sqrt{3}}{2}$$


$$R_{1} = \frac{2}{3}*\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}$$


$$P_{1} = \pi R_{1}^{2} = \pi\frac{a^{2}*3}{9} = \frac{\pi a^{2}}{3}$$


$$R_{2} = \frac{1}{3}h$$


$$R_{2} = \frac{1}{3}*\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{6}$$


$$P_{2} = \pi R_{2}^{2} = \pi\frac{a^{2}*3}{36} = \frac{a^{2}\pi}{12}$$


kola wpisane


$$R = \frac{a\sqrt{3}}{3}$$


$$r_{1} = \frac{a\sqrt{3}}{6}$$


$$q = \frac{1}{2}$$


$$r_{2} = \frac{a\sqrt{3}}{6}*\frac{1}{2} = \frac{a\sqrt{3}}{12}$$


$$P_{1} = \pi\left( \frac{a\sqrt{3}}{6} \right)^{2} = \frac{a^{2}\pi}{12}\ $$


$$P_{2} = \pi\left( \frac{a\sqrt{3}}{12} \right)^{2} = \frac{{3a}^{2}\pi}{144} = \frac{a^{2}\pi}{48}$$


$$q = \frac{1}{4}$$


$$S = \frac{P_{1}}{1 - q} = \frac{\frac{a^{2}\pi}{12}}{1 - \frac{1}{4}} = \frac{a^{2}\pi}{12}*\frac{4}{3} = \frac{a^{2}\pi}{9}$$


wszystkie kola


$$q = \frac{1}{4}$$


$$S = \frac{P_{1}}{1 - q} = \frac{\frac{a^{2}\pi}{3}}{1 - \frac{1}{4}} = \frac{a^{2}\pi}{3}*\frac{4}{3} = \frac{4a^{2}\pi}{9}$$

Zadanie 25

  1. $\operatorname{}\frac{2n^{2} + 2n + 1}{n^{2} + 3n + 1}$


$$\operatorname{}{\frac{2n^{2} + 2n + 1}{n^{2} + 3n + 1} =}\operatorname{}{\frac{\overset{2}{\overbrace{\frac{2n^{2}}{n^{2}}}} + \overset{0}{\overbrace{\frac{2n}{n^{2}}}} + \overset{0}{\overbrace{\frac{1}{n^{2}}}}}{\underset{1}{} + \underset{0}{} + \underset{0}{}} = 2}$$

  1. $\operatorname{}{\sqrt{n^{2} + n} - n}$


$$\operatorname{}{\sqrt{n^{2} + n} - n = \operatorname{}\frac{\overset{a + b}{\overbrace{\left( \sqrt{n^{2} + n} + n \right)}}\overset{a - b}{\overbrace{(\sqrt{n^{2} + n} - n)}}}{\sqrt{n^{2} + n} + n}} = \operatorname{}{\frac{n^{2} + n - n^{2}}{\sqrt{n^{2} + n} + n} = \operatorname{}{\frac{n}{\sqrt{n^{2} + n} + n} = \operatorname{}{\frac{\frac{n}{n}}{\sqrt{\frac{n^{2}}{n^{2}} + \frac{n}{n^{2}}} + \frac{n}{n}} = \frac{1}{\sqrt{1} + 1} = \frac{1}{1 + 1} = \frac{1}{2}}}}$$

  1. $\operatorname{}{\sqrt{\left( n + 2 \right)(n + 8)} - n}$


$$\operatorname{}{\sqrt{\left( n + 2 \right)(n + 8)} - n} = \operatorname{}{\sqrt{n^{2} + 8n + 2n + 16} - n = \operatorname{}{\sqrt{n^{2} + 10n + 16} - n = \operatorname{}\frac{\left( \sqrt{n^{2} + 10n + 16} - n \right)(\sqrt{n^{2} + 10n + 16} + n)}{\sqrt{n^{2} + 10n + 16} + n}}} = \operatorname{}\frac{n^{2} + 10n + 16 - n^{2}}{\sqrt{n^{2} + 10n + 16} + n} = \operatorname{}{\frac{10n + 16}{\sqrt{n^{2} + 10n + 16} + n} = \operatorname{}{\frac{\frac{10n}{n} + \frac{16}{n}}{\sqrt{\frac{n^{2}}{n^{2}} + \frac{10n}{n^{2}} + \frac{16}{n^{2}}} + \frac{n}{n}} = \frac{10}{2} = 5}}$$


Wyszukiwarka

Podobne podstrony:
Ciągi rozwiązania zadań
rozwiazywanie zadan tekstowych wb
efekt plejotropowy rozwiazanie zadań 1
cw8s rozwiazania zadan new id 123854
Metodyka rozwiązywania zadań, Transport Politechnika, Semestr 1, Fizyka
Rozwiązania zadań sprawdzających EKONOMIA działy 1-4, UP, ekonomia
Octan izoamylu rozwiązanie zadań
dodawanie rozwiazywanie zadań
38 Olimpiada Wiedzy Technicznej I Stopień Rozwiązania Zadań
Logika rozwiazania zadan id 272023
GM P1 142 Rozwiazania zadan i s Nieznany
Chromatografia rozwiązania zadań
GM M1 142 Rozwiazania zadan i s Nieznany
Rozwiązanie zadań na energię elektronów w przeskokach
Egzamin 2001.03.24, rozwiazania zadań aktuarialnych matematyka finansowa
rozwiązania zadań z TW, fizyka, liceum

więcej podobnych podstron