CIĄGI – rozwiązanie zadań
Zadanie 1
an = 2n + 1
an + 1 = 2(n+1) + 1 = 2n + 2 + 1 = 2n + 3
an + 1 − an = 2n + 3 − 2n + 3 = 2 > 0
ciag rosnacy↗
$a_{n} = \frac{2n + 3}{n + 1}$
$$a_{n + 1} = \frac{2\left( n + 1 \right) + 3}{\left( n + 1 \right) + 1} = \frac{2n + 2 + 3}{n + 2} = \frac{2n + 5}{n + 2}$$
$$a_{n + 1} - a_{n} = \frac{2n + 5}{n + 2} - \frac{2n + 3}{n + 1} = \frac{\left( 2n + 5 \right)\left( n + 1 \right) - \left( 2n + 3 \right)(n + 2)}{\left( n + 1 \right)(n + 2)} = \frac{\left( 2n^{2} + 2n + 5n + 5 \right) - ({2n}^{2} + 4n + 3n + 6)}{\left( n + 1 \right)(n + 2)} = \frac{2n^{2} + 2n + 5n + 5 - 2n^{2} - 4n - 3n - 6}{\left( n + 1 \right)(n + 2)} = \frac{2n^{2} - 2n^{2} + 7n - 7n + 5 - 6}{\left( n + 1 \right)(n + 2)} = \frac{- 1}{\underset{n \in N}{}} < 0$$
ciag malejacy↘
Zadanie 2
a2 = 4
a4 = 10
an = ?
an = a1 + (n−1)r
a2 = a1 + (2−1)r
a4 = a1 + (4−1)r
$$\left\{ \begin{matrix}
4 = a_{1} + r \\
10 = a_{1} + 3r \\
\end{matrix} \right.\ $$
−6 = −2r
r = 3
4 = a1 + 3
a1 = 1
$$\left\{ \begin{matrix}
a_{1} = 1 \\
r = 3 \\
\end{matrix} \right.\ $$
an = 1 + (n−1)3
an = 1 + 3n − 3
an = 3n − 2
S5 = ?
$$S_{5} = \frac{a_{1} + a_{5}}{2}*5$$
a5 = a1 + 4r
a5 = 1 + 12 = 13
$$S_{5} = \frac{1 + 13}{2}*5 = 35$$
Zadanie 3
3, 6, 9, 12, …, 99
r = 3
an = 99
a1 = 3
an = a1 + (n−1)r
99 = 3 + (n−1) * 3 | : 3
33 = 1 + n − 1
n = 33
$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$
$$S_{33} = \frac{3 + 99}{2}*33$$
S33 = 1683
S99 = ?
$$S_{99} = \frac{1 + 99}{2}*99 = 4950$$
S99 − S33 = 4950 − 1683 = 3267
Zadanie 4
1 + 3 + 5 + … + x = 81
$$\frac{r = 2}{\begin{matrix}
a_{1} = 1 \\
a_{n} = x \\
\end{matrix}}$$
Sn = 81
$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$
an = a1 + (n−1)r
x = 1 + (n−1)2
x − 1 = 2(n−1) | : 2
$$\frac{x - 1}{2} = n - 1$$
$$n = \frac{x - 1}{2} + 1$$
$$n = \frac{x - 1 + 2}{2}$$
$$n = \frac{x + 1}{2}$$
$$81 = \frac{1 + x}{2}*\frac{1 + x}{2}\ \ \ |*4$$
$$324{= (1 + x)}^{2}\ \ \ |\sqrt{}\ $$
18 = |1+x|
18 = 1 + x
x = 17
−18 = 1 + x
x = −19 ∉ D
Odpowiedz : x = 17
Zadanie 5
a5 = 16
a2 = 2
an = a1 * qn − 1
a5 = a1 * q5 − 1
16 = a1 * q4
a2 = a1 * q1
2 = a1q
$$\left\{ \begin{matrix}
2 = a_{1}q \\
2 = {2a}_{1} \\
\end{matrix} \right.\ $$
a1 = 1
$$\left\{ \begin{matrix}
16 = a_{1}*q^{4} \\
2 = a_{1}q \\
\end{matrix} \right.\ $$
$$8 = \frac{a_{1}q^{4}}{a_{1}q}$$
8 = q3
q = 2
$$a_{n} = 1*2^{n - 1} = 2^{n}*2^{- 1} = \frac{1}{2}*2^{n}$$
Zadanie 6
$$\underset{\begin{matrix}
ciag \\
\text{arytmetyczny} \\
\end{matrix}}{}8$$
$$x,\ \underset{\begin{matrix}
ciag \\
\text{geometryczny} \\
\end{matrix}}{}$$
$$\left\{ \begin{matrix}
y - 2 = 2 - x \\
\frac{8}{y} = \frac{y}{2} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
y = 4 - x \\
y^{2} = 16 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
y = 4 - x \\
y_{1} = 4\ \ \land \ \ \ y_{2} = - 4 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x = 4 - y \\
y^{2} = 16 \\
\end{matrix} \right.\ $$
x1 = 4 − y1
x1 = 4 − 4
x1 = 0
x2 = 4 − y2
x2 = 4 + 4
x2 = 8
$$\left\{ \begin{matrix}
x_{1} = 0 \\
y_{1} = 4 \\
\end{matrix}\ \ \ \ \ \vee \ \ \ \ \ \left\{ \begin{matrix}
x_{2} = 8 \\
y_{2} = - 4 \\
\end{matrix} \right.\ \right.\ $$
Zadanie 7
2x1, 2x2, 2x3
x1 + x2 + … + x10 = 110
x7 = 14
a3 = ?
$$\frac{2^{x_{3}}}{2^{x_{2}}} = \frac{2^{x_{2}}}{2^{x_{1}}}$$
2x3 − x2 = 2x2 − x1
funkcja roznowartosciowa
x3 − x2 = x2 − x1
x7 = x1 + 6r
14 = x1 + 6r
14 − x1 = 6r
$$r = \frac{14 - x_{1}}{6}$$
x10 = x1 + 9r
$$x_{10} = x_{1} + 9*\frac{14 - x_{1}}{6}$$
$$x_{10} = x_{1} + \frac{3}{2}\left( 14 - x_{1} \right)$$
$$x_{10} = x_{1} + 21 - \frac{3}{2}x_{1}$$
$$x_{10} = 21 - \frac{1}{2}x_{1}$$
$$S_{10} = \frac{x_{1} + x_{10}}{2}*10$$
$$110 = \frac{x_{1} + 21 - \frac{1}{2}x_{1}}{2}*10$$
$$110 = 5\left( x_{1} + 21 - \frac{1}{2}x_{1} \right)\ \ \ |\ :5$$
$$22 = \ \frac{1}{2}x_{1} + 21$$
$$22 - 21 = \frac{1}{2}x_{1}$$
$$1 = \frac{1}{2}x_{1}\ \ \ |*2$$
2 = x1
x1 = 2
$$r = \frac{14 - x_{1}}{6}$$
$$r = \frac{14 - 2}{6} = 2$$
x3 = x1 + 2r
x3 = 2 + 4
x3 = 6
Odpowiedz : a3 = 26 = 64
Zadanie 8
a1, a2, a3, …
$$\frac{a_{3}}{a_{2}} = \frac{a_{2}}{a_{1}}$$
a3a1 = a2a2
a3a1 = a22
$$q = \frac{a_{3}}{a_{2}}$$
$$q = \frac{a_{2}}{a_{1}}$$
$$q = \frac{a_{n} + 1}{a_{n}}$$
a12 + a22 = a32
an = a1 * qn − 1
a3 = a1 * q2
a2 = a1q
a12 + a1q2 = a12q4 | : a1
1 + q2 = q4
q4 − q2 − 1 = 0
q2 = t t > 0
t2 − t − 1 = 0
=1 + 4 = 5
$$\sqrt{} = \sqrt{5}$$
$$t_{1} = \frac{1 - \sqrt{5}}{2}\ \ \ \notin D$$
$$t_{2} = \frac{1 + \sqrt{5}}{2}$$
$$q^{2} = \frac{1 + \sqrt{5}}{2}$$
$$q = \sqrt{\frac{1 + \sqrt{5}}{2}}$$
Zadanie 9
a5a11 = 4
a1a2a3…a15 = ?
a5 = a1q4
a11 = a1q10
a1q4 * a1q10 = 4
a12 * q14 = 4
$$a_{1}a_{2}a_{3}\ldots a_{15} = a_{1}*\underset{a_{2}}{}*\underset{a_{3}}{}*\underset{a_{4}}{}*\ldots*\underset{a_{15}}{} = a_{1}^{15}q^{1 + 2 + 3 + 4 + \ldots + 14}$$
$$S_{14} = \frac{1 + 14}{2}*14 = \frac{15}{2}*14 = \frac{15*14}{2}$$
$$a_{1}^{15}q\frac{15*14}{2}{= \underset{4}{}}^{7,5} = 4^{7,5}$$
Zadanie 10
$$\left\{ \begin{matrix}
a_{1} = 2 \\
a_{n + 1} = \frac{a_{n}}{a_{n + 1}} \\
\end{matrix} \right.\ $$
$$a_{2} = \frac{a_{1}}{a_{1 + 1}}$$
$$a_{2} = \frac{2}{2 + 1}$$
$$a_{2} = \frac{2}{3}$$
$$a_{3} = \frac{a_{2}}{a_{2 + 1}}$$
$$a_{3} = \frac{\frac{2}{3}}{\frac{2}{3} + 1} = \frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{3}*\frac{3}{5} = \frac{2}{5}$$
$$Odpowiedz:\ \ \ 2,\ \frac{2}{3},\ \frac{2}{5},\ldots$$
Zadanie 11
$$S_{n} = \frac{2^{n}}{n + 1}$$
S1 = a1
$$S_{1} = \frac{2^{1}}{1 + 1} = \frac{2}{2}$$
a1 = 1
S2 = a1 + a2
$$S_{2} = \frac{2^{2}}{2 + 1} = \frac{4}{3}$$
$$1 + a_{2} = \frac{4}{3}$$
$$a_{2} = \frac{1}{3}$$
a1 + a2 + a3 = S3
$$S_{3} = \frac{2^{3}}{3 + 1} = \frac{8}{4} = 2$$
$$1 + \frac{1}{3} + a_{3} = 2$$
$$a_{3} = \frac{2}{3}$$
$$Odpowiedz:\ \ \ 1,\ \frac{1}{3},\ \frac{2}{3},\ \ldots$$
Zadanie 12
$$\sqrt{2} + \sqrt{3},\ - 1,\ \sqrt{3} - \sqrt{2}$$
$$\frac{- 1}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{3} - \sqrt{2}}{- 1}$$
$$1 = \left( \sqrt{2} + \sqrt{3} \right)\left( \sqrt{3} - \sqrt{2} \right)$$
$$1 = \left( \sqrt{3} - \sqrt{2} \right)\left( \sqrt{3} + \sqrt{2} \right)$$
1 = 3 − 2
1 = 1
L = P
Zadanie 13
3 + 9 + 15 + … + x = 363
a1 = 3
a2 = 9
an = x
r = 6
Sn = 363
an = a1 + (n−1)r
x = 3 + (n−1)6
x = 3 + 6n − 6
x = 6n − 3
$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$
$$363 = \frac{3 + 6n - 3}{2}*n$$
$$363 = \frac{{6n}^{2}}{2}$$
726 = 6n2
121 = n2
n = 11 ∨ n = −11
x = 6n − 3
x = 6 * 11 − 3
x = 66 − 3 = 63
x = 6 * (−11) − 3
x = −66 − 3 = −69 ∉ D
Zadanie 14
10, 11, 12, …, 99
r = 4
$$\frac{99}{4} = 24\frac{3}{4}$$
$$\frac{98}{4} = 24\frac{2}{4}$$
$$\frac{97}{4} = 23\frac{1}{3}$$
$$\frac{10}{4} = 2\frac{2}{4}$$
$$\frac{11}{4} = 2\frac{3}{4}$$
$$\frac{12}{4} = 3$$
$$\frac{13}{4} = 3\frac{1}{4}$$
$$\frac{14}{4} = 3\frac{2}{4}$$
$$\frac{15}{4} = 3\frac{3}{4}$$
$$\frac{16}{4} = 4$$
$$\frac{17}{4} = 4\frac{1}{4}$$
a1 = 13
a2 = 17
an = 97
an = a1 + (n−1)r
97 = 13 + (n−1)4
97 = 13 + 4n − 4
97 = 4n + 9
88 = 4n
n = 22
Sn = ?
$$S_{n} = \frac{a_{1} + a_{n}}{2}*n$$
$$S_{22} = \frac{13 + 97}{2}*22$$
$$S_{22} = \frac{110}{2}*22$$
S22 = 110 * 11
S22 = 1210
Zadanie 15
a, b, c
ciag geometryczny
a1 + a1q, a1q2
loga + logb + logc
ciag arytmetyczny
loga, logb, logc
logb − loga = logc − logb
$$\log\frac{b}{a} = \log\frac{c}{b}$$
funkcja roznowartosciowa
$$\frac{b}{a} = \frac{c}{b}$$
Zadanie 16
0, (3) = 0, 3333…=0, 3 + 0, 03 + 0, 003 + …
a1 = 0, 3
a2 = 0, 03
$$q = \frac{0,03}{0,3} = 0,1$$
$$S = \frac{a_{1}}{1 - q}$$
$$S = \frac{0,3}{1 - 0,1} = \frac{0,3}{0,9} = \frac{1}{3}$$
Zadanie 17
$$2,\left( 12 \right) = 2 + 0,\left( 12 \right) = 2 + 0,12121212\ldots = 2 + \underset{ciag}{}$$
a1 = 0, 12
$$q = \frac{0,0012}{0,12} = \frac{1}{100}$$
$$S = \frac{0,12}{1 - 0,01} = \frac{0,12}{0,99} = \frac{12}{99} = \frac{4}{33}$$
$$2 + \frac{4}{33} = 2\frac{4}{33}$$
Zadanie 18
$$\overset{*}{\overbrace{x}} - \underset{+}{} + \overset{*}{\overbrace{\frac{x^{2}}{2}}} - \underset{+}{} + \overset{*}{\overbrace{\frac{x^{3}}{4}}} - \underset{+}{} + \ldots = 1$$
x ≠ 0
$$q = \frac{- \frac{1}{2x}}{x} = \frac{- 1}{2x^{2}}$$
$$q = \frac{x^{2}}{2}*\left( - \frac{2x}{1} \right) = - x^{3}$$
ciag*
$$q = \frac{\frac{x^{2}}{2}}{x} = \frac{x^{2}}{2x} = \frac{x}{2}$$
q′ ∈ (−1,1)
$$- 1 < \frac{x}{2} < 1\ \ |*2$$
−2 < x < 2
x ∈ (−2,2) − {0}
ciag+
$$q'' = - \frac{1}{4x}*( - \frac{2x}{1}) = \frac{1}{2}$$
$$S^{'} = \frac{x}{1 - \frac{x}{2}} = \frac{x}{\frac{2 - x}{2}} = \frac{2x}{2 - x}$$
$$S^{''} = \frac{- \frac{1}{2x}}{1 - \frac{1}{2}} = \frac{- \frac{1}{2x}}{\frac{1}{2}} = \frac{- 2}{2x} = - \frac{1}{x}$$
S′ + S″=1
$$\frac{2x}{2 - x} - \frac{1}{x} = 1\ \ \ \ |*\left( 2 - x \right)x$$
2x2 − (2−x) = (2−x)x
2x2 + x − 2 = 2x − x2
3x2 − x − 2 = 0
=1 + 24 = 25
$$\sqrt{} = 5$$
$$x_{1} = \frac{1 - 5}{6} = \frac{- 4}{6} = \frac{- 2}{3}$$
$$x_{2} = \frac{1 + 5}{6} = 1$$
Zadanie 19
a1, a1q, a1q2
a1 + a1q + a1q2 + … = 12
a12 + a12q2 + a12q4 + … = 48
$$\left\{ \begin{matrix}
\frac{a_{1}}{1 - q} = 12 \\
\frac{a_{1}^{2}}{1 - q^{2}} = 48 \\
\end{matrix} \right.\ $$
a1′ = 6
a1″ = 0
$$q' = \frac{1}{2}$$
q″ = 3
$$Odpowiedz:\ \ 6,\ 3,\ \frac{3}{2}.$$
Zadanie 20
$$\frac{a\sqrt{3}}{2}*\frac{\sqrt{3}}{2} = \frac{3a}{4} = \frac{3}{4}a$$
$$S = \frac{a_{1}}{1 - q}$$
$$P_{1} = \frac{a^{2}\sqrt{3}}{4}$$
$$P_{2} = \frac{{(\frac{a\sqrt{3}}{2})}^{2}\sqrt{3}}{4}\ $$
$$P_{3} = \frac{\left( \frac{3}{4}a \right)^{2}\sqrt{3}}{4} = \frac{9a^{2}\sqrt{3}}{64}$$
$$q = \frac{3}{4}$$
$$S = \frac{\frac{a^{2}\sqrt{3}}{4}}{\frac{1}{4}} = a^{2}\sqrt{3}$$
Zadanie 21
zalozenie
k − 2 > 0
k > 2
a2 = a1 * (k−2)
a2 = 2 * (k−2)
a3 = 2 * (k − 2) * (k − 2)
q ∈ (−1, 1)
$$q = \frac{a_{3}}{a_{2}} = \frac{a_{2}}{a_{1}}$$
$$q = \frac{2\operatorname{}\left( k - 2 \right)}{2} = \operatorname{}\left( k - 2 \right)$$
−1 < (k − 2) < 1
(k−2) < 1
(k−2) < log21
k − 2 < 2
k < 4
(k−2) > −1
(k−2) > 2 − 1
f ↗
$$k - 2 > \frac{1}{2}$$
$$k > 2\frac{1}{2}$$
$$k > \frac{5}{2}$$
$$Odpowiedz:\ \ \ k\ \in \left( \frac{5}{2},\ 4 \right)$$
Zadanie 22
3, 2(35) = 3, 235353535…
$$3 + 0,2 + \underset{\text{szereg}}{}$$
a1 = 0, 035
a2 = 0, 00035
$$q = \frac{0,00035}{0,035} = \frac{35}{3500} = \frac{1}{100}$$
$$S = \frac{a_{1}}{1 - q}$$
$$S = \frac{0,035}{1 - \frac{1}{100}} = \frac{0,035}{0,99} = \frac{35}{990} = \frac{7}{198}$$
$$3 + 0,2 + \frac{7}{198} = 3,2\left( 35 \right)$$
$$3,2\left( 35 \right) = \frac{30}{10} + \frac{2}{10} + \frac{7}{198} = \frac{32}{10} + \frac{7}{198} = \frac{32*198 + 70}{1980} = \frac{6336 + 70}{1980} = \frac{6406}{1980}$$
Zadanie 23
$$15\left( 1 + \frac{2}{x} + \frac{4}{x^{2}} + \ldots \right) = 8\left( 1 + \frac{1}{x^{2}} + \frac{1}{x^{4}} + \ldots \right)$$
a1 = 1
$$a_{2} = \frac{2}{x}$$
$$a_{3} = \frac{4}{x^{2}}$$
$$q = \frac{4}{x^{2}}*\frac{x}{2} = \frac{2}{x}$$
$$S = \frac{1}{1 - \frac{2}{x}}$$
a1 = 1
$$a_{2} = \frac{1}{x^{2}}$$
$$a_{3} = \frac{1}{x^{4}}$$
$$q = \frac{1}{x^{2}}$$
$$S = \frac{1}{1 - \frac{1}{x^{2}}}$$
$$15\left( \frac{1}{1 - \frac{2}{x}} \right) = 8\left( \frac{1}{1 - \frac{1}{x^{2}}} \right)$$
$$\frac{15}{1 - \frac{2}{x}} = \frac{8}{1 - \frac{1}{x^{2}}}$$
$$15 - \frac{15}{x^{2}} = 8 - \frac{16}{x}$$
$$- \frac{15}{x^{2}} + \frac{16}{x} + 7 = 0\ \ |*x^{2}$$
−15 + 16x + 7x2 = 0
7x2 + 16x − 15 = 0
=256 + 4 * 7 * 15 = 676
$$\sqrt{} = 26$$
$$x_{1} = \frac{- 16 - 26}{14} = \frac{42}{14} = \frac{21}{7} = 3$$
$$x_{2} = \frac{- 16 + 26}{14} = \frac{10}{14} = \frac{5}{7}$$
Zadanie 24
P1 + P2 + P3 + …
$$R_{1} = \frac{2}{3}h$$
$$h = \frac{a\sqrt{3}}{2}$$
$$R_{1} = \frac{2}{3}*\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}$$
$$P_{1} = \pi R_{1}^{2} = \pi\frac{a^{2}*3}{9} = \frac{\pi a^{2}}{3}$$
$$R_{2} = \frac{1}{3}h$$
$$R_{2} = \frac{1}{3}*\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{6}$$
$$P_{2} = \pi R_{2}^{2} = \pi\frac{a^{2}*3}{36} = \frac{a^{2}\pi}{12}$$
kola wpisane
$$R = \frac{a\sqrt{3}}{3}$$
$$r_{1} = \frac{a\sqrt{3}}{6}$$
$$q = \frac{1}{2}$$
$$r_{2} = \frac{a\sqrt{3}}{6}*\frac{1}{2} = \frac{a\sqrt{3}}{12}$$
$$P_{1} = \pi\left( \frac{a\sqrt{3}}{6} \right)^{2} = \frac{a^{2}\pi}{12}\ $$
$$P_{2} = \pi\left( \frac{a\sqrt{3}}{12} \right)^{2} = \frac{{3a}^{2}\pi}{144} = \frac{a^{2}\pi}{48}$$
$$q = \frac{1}{4}$$
$$S = \frac{P_{1}}{1 - q} = \frac{\frac{a^{2}\pi}{12}}{1 - \frac{1}{4}} = \frac{a^{2}\pi}{12}*\frac{4}{3} = \frac{a^{2}\pi}{9}$$
wszystkie kola
$$q = \frac{1}{4}$$
$$S = \frac{P_{1}}{1 - q} = \frac{\frac{a^{2}\pi}{3}}{1 - \frac{1}{4}} = \frac{a^{2}\pi}{3}*\frac{4}{3} = \frac{4a^{2}\pi}{9}$$
Zadanie 25
$\operatorname{}\frac{2n^{2} + 2n + 1}{n^{2} + 3n + 1}$
$$\operatorname{}{\frac{2n^{2} + 2n + 1}{n^{2} + 3n + 1} =}\operatorname{}{\frac{\overset{2}{\overbrace{\frac{2n^{2}}{n^{2}}}} + \overset{0}{\overbrace{\frac{2n}{n^{2}}}} + \overset{0}{\overbrace{\frac{1}{n^{2}}}}}{\underset{1}{} + \underset{0}{} + \underset{0}{}} = 2}$$
$\operatorname{}{\sqrt{n^{2} + n} - n}$
$$\operatorname{}{\sqrt{n^{2} + n} - n = \operatorname{}\frac{\overset{a + b}{\overbrace{\left( \sqrt{n^{2} + n} + n \right)}}\overset{a - b}{\overbrace{(\sqrt{n^{2} + n} - n)}}}{\sqrt{n^{2} + n} + n}} = \operatorname{}{\frac{n^{2} + n - n^{2}}{\sqrt{n^{2} + n} + n} = \operatorname{}{\frac{n}{\sqrt{n^{2} + n} + n} = \operatorname{}{\frac{\frac{n}{n}}{\sqrt{\frac{n^{2}}{n^{2}} + \frac{n}{n^{2}}} + \frac{n}{n}} = \frac{1}{\sqrt{1} + 1} = \frac{1}{1 + 1} = \frac{1}{2}}}}$$
$\operatorname{}{\sqrt{\left( n + 2 \right)(n + 8)} - n}$
$$\operatorname{}{\sqrt{\left( n + 2 \right)(n + 8)} - n} = \operatorname{}{\sqrt{n^{2} + 8n + 2n + 16} - n = \operatorname{}{\sqrt{n^{2} + 10n + 16} - n = \operatorname{}\frac{\left( \sqrt{n^{2} + 10n + 16} - n \right)(\sqrt{n^{2} + 10n + 16} + n)}{\sqrt{n^{2} + 10n + 16} + n}}} = \operatorname{}\frac{n^{2} + 10n + 16 - n^{2}}{\sqrt{n^{2} + 10n + 16} + n} = \operatorname{}{\frac{10n + 16}{\sqrt{n^{2} + 10n + 16} + n} = \operatorname{}{\frac{\frac{10n}{n} + \frac{16}{n}}{\sqrt{\frac{n^{2}}{n^{2}} + \frac{10n}{n^{2}} + \frac{16}{n^{2}}} + \frac{n}{n}} = \frac{10}{2} = 5}}$$