Maszyny sciaga

TRAFO


PZr = RZr


$$X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}$$


Ur = I2R(RZRcos±XZRsinφ)

+ ind

-poj


$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$

U2= U20 − (ΔURU2N)

JAŁOWY (GN)


I0N = I0r * I1N


$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$

DN


I0N = I0r * I2N


$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$

-------------------------

TRAFO


PZr = RZr


$$X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}$$


Ur = I2R(RZRcos±XZRsinφ)

+ ind

-poj


$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$

U2= U20 − (ΔURU2N)


Ur = I2R(RZRcos±XZRsinφ)

+ ind

-poj


$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$

U2= U20 − (ΔURU2N)

JAŁOWY (GN)


I0N = I0r * I1N


$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$

DN


I0N = I0r * I2N


$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$

----------------------------

TRAFO


$${P_{\text{Zr}} = R_{\text{Zr}}}{X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}}$$


Ur = I2R(RZRcos±XZRsinφ)

+ ind

-poj


$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$

U2= U20 − (ΔURU2N)


Ur = I2R(RZRcos±XZRsinφ)

+ ind

-poj


$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$

U2= U20 − (ΔURU2N)

JAŁOWY (GN)


I0N = I0r * I1N


$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$

DN


I0N = I0r * I2N


$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$

---------------------------

U2= U20 − (ΔURU2N)

JAŁOWY (GN)


I0N = I0r * I1N


$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$

DN


I0N = I0r * I2N


$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$

INDUKCYJNE


U = 0, 8UN


f = 60Hz


M = 1, 2MN

n=?


MK = λ * M


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$


$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$


$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$


$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$


$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$


$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$


nA = n1(1 − SA)


nB = n1(1 − SB)

---------------------------


Rd = 0, 2ΩU = 0, 8UN

f = 60Hz

Mr = ?


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$


$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$

--------------------------

n= -400obr/min

M=MN

Rd/R2 = ?


$$S^{'} = \frac{n_{1} - n}{n_{1}}$$


$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$

INDUKCYJNE


U = 0, 8UN


f = 60Hz


M = 1, 2MN

n=?


MK = λ * M


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$


$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$


$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$


$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$


$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$


$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$


nA = n1(1 − SA)


nB = n1(1 − SB)

---------------------------


Rd = 0, 2ΩU = 0, 8UN

f = 60Hz

Mr = ?


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$


$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$

--------------------------

n= -400obr/min

M=MN

Rd/R2 = ?


$$S^{'} = \frac{n_{1} - n}{n_{1}}$$


$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$

INDUKCYJNE


U = 0, 8UN


f = 60Hz


M = 1, 2MN

n=?


MK = λ * M


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$


$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$


$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$


$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$


$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$


$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$


nA = n1(1 − SA)


nB = n1(1 − SB)

---------------------------


Rd = 0, 2ΩU = 0, 8UN

f = 60Hz

Mr = ?


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$


$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$

--------------------------

n= -400obr/min

M=MN

Rd/R2 = ?


$$S^{'} = \frac{n_{1} - n}{n_{1}}$$


$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$

INDUKCYJNE


U = 0, 8UN


f = 60Hz


M = 1, 2MN

n=?


MK = λ * M


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$


$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$


$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$


$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$


$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$


$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$


nA = n1(1 − SA)


nB = n1(1 − SB)

---------------------------


Rd = 0, 2ΩU = 0, 8UN

f = 60Hz

Mr = ?


$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$


$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$


$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$

--------------------------

n= -400obr/min

M=MN

Rd/R2 = ?


$$S^{'} = \frac{n_{1} - n}{n_{1}}$$


$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$


Wyszukiwarka

Podobne podstrony:
Maszyny sciaga
maszynoznastwo (ściąga)
SCIA, Transport UTP, semestr 5, PET, Migawa (Vendettacosik), Eksploatacja maszyn, ŚCIĄGA
badanie maszyn sciaga cz2, Badanie maszyn
maszyny sciaga
Maszynoznawstwo sciąga, Materiały na studia, Polibuda, AiR Semestr I, Moimt, bonus, Kolokwia
Maszyny ściąga na prąd stały
Maszyny ściąga
eksploatacja maszyn sciaga
Maszyny - Ściąga Blok 2, Technologia żywności i żywienia człowieka, Maszynoznawstwo
maszyny sciaga duza wersja
Maszyny Ściąga Blok 3
Ściąga ekslpoatacja, Transport UTP, semestr 5, PET, Migawa (Vendettacosik), Eksploatacja maszyn, ŚCI
technologia prac maszynowych ŚCIĄGA
Badanie Maszyn ściąga 1
MASZYNOZNAWSTWO ściąga
maszyny ściąga

więcej podobnych podstron