TRAFO
PZr = RZr
$$X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}$$
Ur = I2R(RZRcos±XZRsinφ)
+ ind
-poj
$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$
U2= U20 − (ΔUR* U2N)
JAŁOWY (GN)
I0N = I0r * I1N
$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$
DN
I0N = I0r * I2N
$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$
-------------------------
TRAFO
PZr = RZr
$$X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}$$
Ur = I2R(RZRcos±XZRsinφ)
+ ind
-poj
$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$
U2= U20 − (ΔUR* U2N)
Ur = I2R(RZRcos±XZRsinφ)
+ ind
-poj
$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$
U2= U20 − (ΔUR* U2N)
JAŁOWY (GN)
I0N = I0r * I1N
$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$
DN
I0N = I0r * I2N
$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$
----------------------------
TRAFO
$${P_{\text{Zr}} = R_{\text{Zr}}}{X_{\text{Zr}} = \sqrt{U_{\text{ZR}}^{2} - P_{\text{ZR}}^{2}}}$$
Ur = I2R(RZRcos±XZRsinφ)
+ ind
-poj
$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$
U2= U20 − (ΔUR* U2N)
Ur = I2R(RZRcos±XZRsinφ)
+ ind
-poj
$$U_{20} = \frac{U_{1}}{\vartheta_{U}}$$
U2= U20 − (ΔUR* U2N)
JAŁOWY (GN)
I0N = I0r * I1N
$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$
DN
I0N = I0r * I2N
$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$
---------------------------
U2= U20 − (ΔUR* U2N)
JAŁOWY (GN)
I0N = I0r * I1N
$$I_{0} = \frac{I_{0N}*U_{1}}{U_{1N}}$$
DN
I0N = I0r * I2N
$$I_{0} = \frac{I_{0N}*U_{2}}{U_{2N}}$$
INDUKCYJNE
U = 0, 8UN
f = 60Hz
M = 1, 2MN
n=?
MK = λ * M
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$
$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$
$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$
$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$
$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$
$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$
nA = n1(1 − SA)
nB = n1(1 − SB)
---------------------------
Rd = 0, 2ΩU = 0, 8UN
f = 60Hz
Mr = ?
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$
$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$
--------------------------
n= -400obr/min
M=MN
Rd/R2 = ?
$$S^{'} = \frac{n_{1} - n}{n_{1}}$$
$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$
INDUKCYJNE
U = 0, 8UN
f = 60Hz
M = 1, 2MN
n=?
MK = λ * M
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$
$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$
$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$
$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$
$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$
$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$
nA = n1(1 − SA)
nB = n1(1 − SB)
---------------------------
Rd = 0, 2ΩU = 0, 8UN
f = 60Hz
Mr = ?
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$
$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$
--------------------------
n= -400obr/min
M=MN
Rd/R2 = ?
$$S^{'} = \frac{n_{1} - n}{n_{1}}$$
$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$
INDUKCYJNE
U = 0, 8UN
f = 60Hz
M = 1, 2MN
n=?
MK = λ * M
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$
$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$
$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$
$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$
$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$
$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$
nA = n1(1 − SA)
nB = n1(1 − SB)
---------------------------
Rd = 0, 2ΩU = 0, 8UN
f = 60Hz
Mr = ?
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$
$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$
--------------------------
n= -400obr/min
M=MN
Rd/R2 = ?
$$S^{'} = \frac{n_{1} - n}{n_{1}}$$
$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$
INDUKCYJNE
U = 0, 8UN
f = 60Hz
M = 1, 2MN
n=?
MK = λ * M
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$\lambda^{*} = \frac{M_{K}^{*}}{M}$$
$$n^{*} = n_{1}*\frac{f}{f_{\text{\ N}}}$$
$$S_{K} = S_{N}*(\lambda_{N} + \sqrt{{\lambda_{N}}^{2} - 1})$$
$$S_{K}^{*} = S_{K}*\frac{f_{N}}{f}$$
$$S_{A} = S_{k}^{*}*(\lambda^{*} + \sqrt{\lambda^{*2} - 1})$$
$$S_{B} = S_{k}^{*}*(\lambda^{*} - \sqrt{\lambda^{*2} - 1})$$
nA = n1(1 − SA)
nB = n1(1 − SB)
---------------------------
Rd = 0, 2ΩU = 0, 8UN
f = 60Hz
Mr = ?
$$M_{K}^{*} = M_{K}*\left( \frac{U_{1f}}{U_{1Nf}} \right)^{2}*\left( \frac{f_{N}}{f_{1}} \right)^{2}$$
$$S_{k}^{*} = S_{K}*\frac{f_{N}}{f}*\frac{R_{2} + R_{d}}{R_{2}}$$
$$M_{r} = \frac{2M_{K}^{*}}{\frac{1}{S_{K}^{*}} + S_{K}^{*}}$$
--------------------------
n= -400obr/min
M=MN
Rd/R2 = ?
$$S^{'} = \frac{n_{1} - n}{n_{1}}$$
$$S^{'} = S_{N}\frac{R_{2} + R_{d}}{R_{2}}$$