Korozja gazowa
Korozją gazową nazywa się korozję chemiczną w gazach przy wysokich temperaturach. Zagadnienie to nabiera szczególnego znaczenia ze względu na dużą ilość procesów technologicznych przebiegających w wysokich temperaturach. Warstewki wytworzone na metalach w wyższej temperaturze są tlenkami, będącymi produktami reakcji metalu z tlenem z powierzchnią bądź z gazu spalinowego. Przebieg takiej reakcji zależy w dużym stopniu od prężności dysocjacji (rozpadu) tlenku, będącej miarą trwałości tlenku. Własności powstałych warstewek na metalach, a zwłaszcza jej szczelność decydują o szybkości korozji gazowej na metalu. Nie wszystkie metale tworzą szczelne warstewki. Nie tworzą je: K, Na, Ca, Mg. Są one, dlatego bardzo aktywne.
Przy ogrzewaniu w powietrzu aluminium, żelaza, miedzi i niklu korozja przebiega równomiernie aż do określonej temperatury, w której na skutek wzrastających naprężeń w warstewce i powstających skutkiem tego pęknięć, następuje skok wzrostu korozji. Dla tej grupy metali technicznie ważnych, warunki korozji tzn. skład fazy gazowej i temperatura odgrywają ważną rolę. Metale nie zachowują się w różnych gazach jednakowo. Np. nikiel jest dość odporny na działanie tlenu, pary wodnej i dwutlenku węgla, natomiast silnie koroduje w dwutlenku siarki. Natomiast miedź ulega korozji najszybciej w atmosferze tlenu. Tlenki wolframu, molibdenu, osmu i irydu nie tworzą warstewek ochronnych w wyższych temperaturach, ponieważ utleniają się z powierzchni metalu. Jednakże ich korozja przebiega wolno, stąd należą do metali odpornych. Metale szlachetne (Pt, Ag, Au) nie korodują w wyższych temperaturach. Utworzone w niższych temperaturach tlenki (Pt, Ag) ulegają dysocjacji i na składniki wyjściowe przy dalszym podwyższaniu temperatury. Spośród wszystkich metali największe znaczenie mają: glin i jego stopy, miedź i jej stopy oraz żelazo i jego stopy (stal, żeliwo).
Jedną z najbardziej rozpowszechnionych i skutecznych metod zabezpieczania antykorozyjnego w życiu codziennym jest cynkowanie.
Cynk jest metalem miękkim, dość dobrze kowalnym, o barwie srebrzystej z błękitnym odcieniem. W układzie okresowym pierwiastków cynk znajduje się wraz z kadmem i rtęcią w grupie IIB. Jest mniej aktywny chemicznie niż metale ziem alkalicznych (grupa IIA), lecz bardziej aktywny niż metale z rodziny miedziowców (grupa I B). Cynk jest dobrym czynnikiem redukującym zarówno w środowisku kwaśnym, jak i alkalicznym.
Korozja elektrochemiczna
Korozja elektrochemiczna - niszczenie metalu w wyniku procesów elektrodowych zachodzących na granicy faz metal – elektrolit. Metal ulega rozpuszczaniu przechodząc do elektrolitu w postaci jonów:
Fe ↔ Fe+2 + 2e-
W wyniku powyższej reakcji na metalu (metalowej elektrodzie) powstaje elektryczny potencjał, którego wartość zależy od aktywności chemicznej metalu i rodzaju elektrolitu. Potencjał którego wartość zależy od aktywności chemicznej metalu i rodzaju elektrolitu. Potencjał pomierzony względem elektrody wodorowej, w standardowych warunkach, tzn. w temp. 25°C i 1 molowym roztworze jonów danego metalu, nazywa się normalnym potencjałem elektrodowym. pomierzony względem elektrody wodorowej, w standardowych warunkach, tzn. w temp. 25°C i 1 molowym roztworze jonów danego metalu, nazywa się normalnym potencjałem elektrodowym.
Metal znajduje się w stanie pasywnym wtedy, kiedy ma znacznie większą odporność na korozję niż odporność wskazana przez jego położenie w szeregu napięciowym. Przykładem są stale odporne na korozję, zawierające więcej niż 13% Cr. Pasywność jest wynikiem powstania na powierzchni metalu cienkiej, nierozpuszczalnej, regenerującej się warstwy tlenków, o zwartej budowie, ściśle związanej z metalicznym podłożem.
Korozja ogólna występuje w wypadku gdy powierzchnie pojedynczych elektrod mają rozmiary mikroskopowe bądź mniejsze i/lub gdy elektrody są rozmieszczone na powierzchni metalu w sposób równomierny.
Korozja lokalna ma miejsce gdy można rozróżnić oddzielne ogniwa korozyjne.
Korozja wżerowa w postaci wżerów zainicjowanych w miejscu uszkodzenia pasywnej warstwy tlenkowej. Uszkodzone miejsce jest anodą, gdzie metal ulega rozpuszczaniu. Wobec małej powierzchni anody, korozja postępuje w głąb metalu.
Ochrona przed korozją elektrochemiczną
Stosowanie metali i stopów o wysokiej czystości metalurgicznej
Stosowanie odpowiednich dodatków stopowych
Właściwe projekty konstrukcji, zmniejszające niebezpieczeństwo wystąpienia ogniw galwanicznych