6 Korozja materiałów inż gazowa i elektrochemiczna

Korozja gazowa

Korozją gazową nazywa się korozję chemiczną w gazach przy wysokich temperaturach. Zagadnienie to nabiera szczególnego znaczenia ze względu na dużą ilość procesów technologicznych przebiegających w wysokich temperaturach. Warstewki wytworzone na metalach w wyższej temperaturze są tlenkami, będącymi produktami reakcji metalu z tlenem z powierzchnią bądź z gazu spalinowego. Przebieg takiej reakcji zależy w dużym stopniu od prężności dysocjacji (rozpadu) tlenku, będącej miarą trwałości tlenku. Własności powstałych warstewek na metalach, a zwłaszcza jej szczelność decydują o szybkości korozji gazowej na metalu. Nie wszystkie metale tworzą szczelne warstewki. Nie tworzą je: K, Na, Ca, Mg. Są one, dlatego bardzo aktywne.
Przy ogrzewaniu w powietrzu aluminium, żelaza, miedzi i niklu korozja przebiega równomiernie aż do określonej temperatury, w której na skutek wzrastających naprężeń w warstewce i powstających skutkiem tego pęknięć, następuje skok wzrostu korozji. Dla tej grupy metali technicznie ważnych, warunki korozji tzn. skład fazy gazowej i temperatura odgrywają ważną rolę. Metale nie zachowują się w różnych gazach jednakowo. Np. nikiel jest dość odporny na działanie tlenu, pary wodnej i dwutlenku węgla, natomiast silnie koroduje w dwutlenku siarki. Natomiast miedź ulega korozji najszybciej w atmosferze tlenu. Tlenki wolframu, molibdenu, osmu i irydu nie tworzą warstewek ochronnych w wyższych temperaturach, ponieważ utleniają się z powierzchni metalu. Jednakże ich korozja przebiega wolno, stąd należą do metali odpornych. Metale szlachetne (Pt, Ag, Au) nie korodują w wyższych temperaturach. Utworzone w niższych temperaturach tlenki (Pt, Ag) ulegają dysocjacji i na składniki wyjściowe przy dalszym podwyższaniu temperatury. Spośród wszystkich metali największe znaczenie mają: glin i jego stopy, miedź i jej stopy oraz żelazo i jego stopy (stal, żeliwo).

Jedną z najbardziej rozpowszechnionych i skutecznych metod zabezpieczania antykorozyjnego w życiu codziennym jest cynkowanie.

Cynk jest metalem miękkim, dość dobrze kowalnym, o barwie srebrzystej z błękitnym odcieniem. W układzie okresowym pierwiastków cynk znajduje się wraz z kadmem i rtęcią w grupie IIB. Jest mniej aktywny chemicznie niż metale ziem alkalicznych (grupa IIA), lecz bardziej aktywny niż metale z rodziny miedziowców (grupa I B). Cynk jest dobrym czynnikiem redukującym zarówno w środowisku kwaśnym, jak i alkalicznym.

Korozja elektrochemiczna - niszczenie metalu w wyniku procesów elektrodowych zachodzących na granicy faz metal – elektrolit. Metal ulega rozpuszczaniu przechodząc do elektrolitu w postaci jonów:

Fe ↔ Fe+2 + 2e-

W wyniku powyższej reakcji na metalu (metalowej elektrodzie) powstaje elektryczny potencjał, którego wartość zależy od aktywności chemicznej metalu i rodzaju elektrolitu. Potencjał którego wartość zależy od aktywności chemicznej metalu i rodzaju elektrolitu. Potencjał pomierzony względem elektrody wodorowej, w standardowych warunkach, tzn. w temp. 25°C i 1 molowym roztworze jonów danego metalu, nazywa się normalnym potencjałem elektrodowym. pomierzony względem elektrody wodorowej, w standardowych warunkach, tzn. w temp. 25°C i 1 molowym roztworze jonów danego metalu, nazywa się normalnym potencjałem elektrodowym.

Metal znajduje się w stanie pasywnym wtedy, kiedy ma znacznie większą odporność na korozję niż odporność wskazana przez jego położenie w szeregu napięciowym. Przykładem są stale odporne na korozję, zawierające więcej niż 13% Cr. Pasywność jest wynikiem powstania na powierzchni metalu cienkiej, nierozpuszczalnej, regenerującej się warstwy tlenków, o zwartej budowie, ściśle związanej z metalicznym podłożem.

Korozja ogólna występuje w wypadku gdy powierzchnie pojedynczych elektrod mają rozmiary mikroskopowe bądź mniejsze i/lub gdy elektrody są rozmieszczone na powierzchni metalu w sposób równomierny.

Korozja lokalna ma miejsce gdy można rozróżnić oddzielne ogniwa korozyjne.

Korozja wżerowa w postaci wżerów zainicjowanych w miejscu uszkodzenia pasywnej warstwy tlenkowej. Uszkodzone miejsce jest anodą, gdzie metal ulega rozpuszczaniu. Wobec małej powierzchni anody, korozja postępuje w głąb metalu.

Ochrona przed korozją elektrochemiczną

  1. Stosowanie metali i stopów o wysokiej czystości metalurgicznej

  2. Stosowanie odpowiednich dodatków stopowych

  3. Właściwe projekty konstrukcji, zmniejszające niebezpieczeństwo wystąpienia ogniw galwanicznych


Wyszukiwarka

Podobne podstrony:
Ankieta techniczna dotycząca szczotek, Katalogi materiałów eksploatacyjne silników elektrycznych
stany nieustalone w RC, Elektrotechnika-materiały do szkoły, Elektrotechnika
ekologia - sprawozdanie - bakterie, Zootechnika (UR Kraków) - materiały, INŻ, Ekologia
Badanie scalonego wzmacniacza prądu stałego v2, Politechnika Lubelska, Elektrotechnika inż, ROK 3, E
wyklad12tt20, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, Elekt
wyklad07tt08, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, Elekt
Wyklad11tt16 19, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, El
wyklad11tt16-19, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, El
wyklad15tt24, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, Elekt
wyklad03tt02, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, Elekt
wyklad13tt21-22, aaa, studia 22.10.2014, Materiały od Piotra cukrownika, materialy Kamil, Szkoła, El
Korozja materiałów budowlanych
Sprawozdanie - materiałki własności mechaniczne, Elektrotechnika, dc pobierane, pnom wimir, PNOM, Ma
Inzynieria materialowa czesc obliczeniowa, Elektrotechnika AGH, Semestr III zimowy 2013-2014, Inżyni
Cw Materialy do cwiczen z elektrot
W latach 1822, Elektrotechnika-materiały do szkoły, Elektrotechnika
,chemia L,korozja materiałów niemetalicznych

więcej podobnych podstron