wytrzymka ARKUSZ4

DANE: σx σy τxy

$\mathbf{\sigma}_{\mathbf{1}} = \ \frac{\sigma_{x} + \sigma_{y}}{2} + \ \frac{1}{2}\sqrt{{(\sigma_{x} - \sigma_{y})}^{2} + 4\tau_{\text{xy}}^{2}}$ $\mathbf{\sigma}_{\mathbf{2}} = \ \frac{\sigma_{x} + \sigma_{y}}{2} - \ \frac{1}{2}\sqrt{{(\sigma_{x} - \sigma_{y})}^{2} + 4\tau_{\text{xy}}^{2}}$ $\tan{2\alpha = \frac{2\tau_{\text{xy}}}{\sigma_{x} - \sigma_{y}}}$ $\mathbf{\alpha} = \frac{1}{2}\ arctan(\frac{2\tau_{\text{xy}}}{\sigma_{x} - \sigma_{y}})$

n n*45
$$\sigma_{xn} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 2n \right)$$

$$\sigma_{yn} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 2n \right)$$

$$\tau_{\text{xyn}} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(2n)$$
0 0
$$\sigma_{x0} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 0 \right)$$

$$\sigma_{y0} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 0 \right)$$

$$\tau_{xy0} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(0)$$
1 45
$$\sigma_{x45} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 90 \right)$$

$$\sigma_{y45} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 90 \right)$$

$$\tau_{xy45} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(90)$$
2 90
$$\sigma_{x90} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 180 \right)$$

$$\sigma_{y90} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 180 \right)$$

$$\tau_{xy90} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(180)$$
3 135
$$\sigma_{x135} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 270 \right)$$

$$\sigma_{y135} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 270 \right)$$

$$\tau_{xy135} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(270)$$
4 180
$$\sigma_{x180} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 360 \right)$$

$$\sigma_{y180} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 360 \right)$$

$$\tau_{xy180} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(360)$$
5 225
$$\sigma_{x225} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 450 \right)$$

$$\sigma_{y225} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 450 \right)$$

$$\tau_{xy225} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(450)$$
6 270
$$\sigma_{x270} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 540 \right)$$

$$\sigma_{y270} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 540 \right)$$

$$\tau_{xy270} = \frac{\sigma_{1} - \sigma_{2}}{2}sin540)$$
7 315
$$\sigma_{x315} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 630 \right)$$

$$\sigma_{y315} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 630 \right)$$

$$\tau_{xy315} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(630)$$
8 360
$$\sigma_{x360} = \frac{\sigma_{1} + \sigma_{2}}{2} + \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 720 \right)$$

$$\sigma_{y360} = \frac{\sigma_{1} + \sigma_{2}}{2} - \frac{\sigma_{1} - \sigma_{2}}{2}\cos\left( 720 \right)$$

$$\tau_{xy360} = \frac{\sigma_{1} - \sigma_{2}}{2}sin(720)$$

Wyszukiwarka

Podobne podstrony:
Strona tytułowa do arkuszy, Politechnika Płock, Wytrzymałość Materiałów II, Wydymałka II
MECHANIKA TECHNICZNA I WYTRZYMAŁOŚĆ MATERIAŁÓW ARKUSZ PRZEDM
MECHANIKA TECHNICZNA I WYTRZYMAŁOŚĆ MATERIAŁÓW ARKUSZ PRZEDM
wytrzymałość 2
Wytrzymalosc na zlamanie
ARKUSZ
Ograniczenia wytrzymałościowe pętli skonstruowanych z taśm
312[01] 01 122 Arkusz egzaminac Nieznany (2)
J rosyjski arkusz rozsz cz I
polski arkusz 2006
arkusz fizyka poziom s rok 2001 535
Odpowiedzi Przykladowy arkusz PP Fizyka (2)
ARKUSZ 8
Odpowiedzi Test przed probna matura 2008 Arkusz PR Wos

więcej podobnych podstron