Wiązanie jonowe

Wiązanie jonowe (inaczej elektrowalencyjne, heteropolarne lub biegunowe) jest to rodzaj wiązania chemicznego. Istotą tego wiązania jest elektrostatyczne oddziaływanie między jonami o różnoimiennych ładunkach.

Wiązanie to powstaje najczęściej między metalem a niemetalem. Różnica elektroujemności w skali Paulinga jest większa lub równa 1,7. Największy udział tego rodzaju wiązania można zaobserwować w związkach litowców z fluorowcami. Teoretycznie najsilniejszym wiązaniem jonowym charakteryzuje się fluorek fransu - FrF, gdyż posiada największą różnicę elektroujemności.

Związki, w których ono występuje, są zdolne do dysocjacji elektrolitycznej, tzn. do rozpadu na wolne jony. Stopy i roztwory związków chemicznych, w których występuje wiązanie jonowe są elektrolitami, tzn. są zdolne do przewodzenia prądu elektrycznego.

W kryształach substancji jonowych, nośniki ładunku (jony) są "więźniami" sieci krystalicznej. W stopionych lub rozpuszczonych kryształach jony są z niej uwolnione i są zdolne przewodzić prąd elektryczny. Trzeba pamiętać, że pojedyncze cząsteczki jonowe występują tylko w stanie gazowym.

Z formalnego punktu widzenia przyjmuje się, że wiązania jonowe występują między atomami, których różnica elektroujemności jest nie mniejsza niż 1.7 w skali Paulinga. W rzeczywistości jednak nie istnieją czyste wiązania jonowe i każde z nich ma też pewne cechy kowalencyjnego, co powoduje, że granica między tymi dwoma rodzajami wiązań jest bardzo płynna.

W chemii kwantowej przyjmuje się, że wiązanie jonowe ma miejsce wtedy, gdy teoretycznie obliczona energia orbitali molekularnych, przy założeniu, że wiązanie ma jednak charakter kowalencyjny, jest większa od potencjału jonizacyjnego atomu, który jest donorem (dostarczycielem) elektronu dla drugiego atomu. Obliczenia teoretyczne energii takich hipotetycznych orbitali są jednak wysoce dyskusyjne.

Praktycznie, aby ustalić czy wiązanie jest jonowe czy kowalencyjne, wykonuje się pomiar gęstości elektronowej wokół atomów tworzących wiązanie za pomocą rentgenografii strukturalnej. Jeśli w przestrzeni między atomami występuje obszar, gdzie gęstość elektronowa jest tak mała, że nie da się jej zmierzyć, a zatem chmury elektronowe wokół obu atomów są wyraźnie rozdzielone, to przyjmuje się, że wiązanie ma istotnie charakter jonowy.

Wiązanie chemiczne według klasycznej definicji to każde trwałe połączenie dwóch atomów. Wiązania chemiczne powstają na skutek uwspólnienia dwóch lub więcej elektronów pochodzących bądź z jednego, bądź z obu łączących się atomów lub przeskoku jednego lub więcej elektronów z jednego atomu na atom i utworzenia w wyniku tego tzw. pary jonowej.Spis treści [ukryj]

Do utworzenia typowego wiązania chemicznego potrzeba minimum dwóch elektronów, zwykle po jednym z każdego łączącego się atomu. Wiązanie, które tworzą dwa elektrony nazywa się wiązaniem pojedynczym. Gdy uczestniczących elektronów jest 4, mamy do czynienia z wiązaniem podwójnym, które jednak w istocie jest dwoma różnymi wiązaniami łączącymi te same atomy. Gdy dzielonych elektronów jest 6, mamy do czynienia z wiązaniem potrójnym.

Wiązania pojedyncze, podwójne i potrójne występują dość powszechnie. Znacznie rzadziej spotykane są wiązania o większej krotności, niemniej znane jest kilkaset związków, w których występują wiązania poczwórne, są też pierwsze doniesienia naukowe o istnieniu wiązań sześciokrotnych.

Wiele wiązań wielokrotnych jest zdelokalizowanych, tzn. tworzące je elektrony są uwspólniane przez więcej niż dwa atomy. Delokalizacja ta może przybierać albo formę rezonansu chemicznego tak jak to ma miejsce w np. związkach aromatycznych lub formę pasm orbitalowych - występujących zwłaszcza w kryształach metali (tzw. wiązanie metaliczne) ale również w niektórych rodzajach polimerów oraz sprzężonych dienów. Występowanie pasm zdelokalizowanych orbitali umożliwia powstanie pasm przewodnictwa, które nadają materiałom cechy przewodników elektrycznych.

Podział wiązań ze względu na ich naturę wynika z odpowiedzi na pytanie, które w uproszczeniu brzmi:

Gdzie znajdują się elektrony uwspólniane w ramach tych wiązań?

Podział ten jest bardzo nieostry, często dyskusyjny w przypadku wielu związków chemicznych i silnie zależy od przyjętych kryteriów, które są również często dyskutowane i powoli ewoluują. Dokładną naturę wiązań bada się złożonymi metodami fizykochemicznymi, takimi jak np. rentgenografia strukturalna, EPR, NMR, które umożliwiają tworzenie "map" gęstości elektronowej występującej wokół jąder atomów tworzących związki chemiczne. Ze względu na to, że wiązania chemiczne są w istocie zjawiskami kwantowymi pełen opis ich natury i odmian jest możliwy dopiero na poziomie opisu mechaniki kwantowej.

Wiązanie kowalencyjne niespolaryzowane [edytuj]

Wiązanie kowalencyjne niespolaryzowane powstaje na skutek nakładania się orbitali atomowych obsadzonych pojedynczymi elektronami o przeciwnej orientacji spinu. Wiązanie to powstaje, gdy różnica elektroujemności wynosi od 0 do 0,4.

Substancje w których przeważa wiązanie kowalencyjne niespolaryzowane mogą występować w 3 stanach skupienia. Charakteryzują się niskimi temperaturami topnienia i wrzenia, dobrze rozpuszczają się w rozpuszczalnikach niepolarnych (np: chloroform, aceton, benzen), natomiast słabo w rozpuszczalnikach polarnych (np: woda). W stanie ciekłym rozpuszczone w wodzie nie przewodzą prądu. Reakcje z ich udziałem zachodzą powoli i przy małej wydajności.

Wiązanie kowalencyjne powstaje między dwoma atomami niemetali, których wzajemna różnica elektroujemności jest mniejsza od 1,7 w skali Paulinga. Granica ta jest bardzo umowna i ma raczej charakter orientacyjny. Elektrony uwspólnione tworzące wiązanie są przesunięte w stronę atomu pierwiastka o większej elektroujemności, co sprawia, że przy tym atomie tworzy się cząstkowy ładunek elektryczny ujemny, natomiast przy atomie o mniejszej elektroujemności tworzy się dodatni. Wiązanie kowalencyjne spolaryzowane ma charakter dipola elektrycznego.

Wiązania kowalencyjne można jeszcze podzielić na zwykłe, w których uwspólniane elektrony pochodzą w równej liczbie od obu atomów (jeśli jeden "daje" trzy elektrony, to drugi też "daje" trzy) oraz na wiązania koordynacyjne, w których tylko jeden atom jest donorem elektronów lub liczba elektronów, które "daje" jeden atom nie jest równa liczbie, którą daje drugi.

Wiązania koordynacyjne mają często dokładnie taki sam charakter jak wiązania kowalencyjne. W wielu związkach, w których z rachunku elektronów wynika, że część wiązań jest formalnie kowalencyjnych a inna część koordynacyjnych są one w rzeczywistości całkowicie nieodróżnialne, posiadają taką samą geometrię i energię i nie da się praktycznie ustalić, które są które. W wielu związkach chemicznych wiązania koordynacyjne daje się jednak wyraźnie wskazać i mają one pewne szczególne własności, których zwykłe wiązania kowalencyjne nie mogą mieć. Przykładem tego rodzaju wiązań są np. te występujące w Pi kompleksach.

Wiązanie jonowe powstaje między dwoma atomami, których wzajemna różnica elektroujemności jest bardzo duża (Δeu≥1,7). Elektrony zamiast się uwspólnić "przeskakują" na stałe do jednego z atomów. W wyniku tego jeden z atomów ma nadmiar ładunku ujemnego i staje się ujemnie naładowanym jonem (anionem) a drugi ma nadmiar ładunku dodatniego i staje się kationem. Oba atomy tworzą parę jonową (+)(-), która trzyma się razem na zasadzie przyciągania ładunków elektrostatycznych i może w sprzyjających warunkach ulegać dysocjacji elektrolitycznej.

Na ogół, aby wiązanie się wytworzyło, różnica elektroujemności musi być większa lub równa 1,7 w skali Paulinga, jednak granica, przy której tworzy się wiązanie jonowe jest bardzo płynna, gdyż zależy ona od wielu różnych czynników. Na przykład we fluorowodorze różnica elektroujemności między fluorem a wodorem wynosi aż 1,9 a mimo to wiązanie F-H ma charakter kowalencyjny spolaryzowany.

Wiązanie wodorowe formalnie rzecz biorąc nie jest wiązaniem chemicznym, w tym sensie, że nie powstaje ono na skutek wymiany elektronów i jest zwykle dużo mniej trwałe od "prawdziwych" wiązań, jednak ten rodzaj oddziaływania również łączy ze sobą atomy. Wiązanie wodorowe polega na "dzieleniu" między dwoma atomami (np. tlenu) jednego atomu wodoru, tak, że atom wodoru jest częściowo połączony z nimi oboma. Można to też ująć w ten sposób, że atom wodoru jest powiązany z oboma atomami wiązaniami "połówkowymi", gdyż jedno normalne pojedyncze (czyli dwuelektronowe) wiązanie wodór-inny atom jest dzielone na dwa słabsze "półwiązania" inny atom-wodór i wodór-inny atom.

Oddziaływania międzycząsteczkowe to inne niż wiązania chemiczne siły wiążące atomy i cząsteczki. Podstawowa różnica między oddziaływaniami międzycząsteczkowymi a wiązaniami chemicznymi, polega na tym, że nie wiążą one atomów na tyle trwale, aby umożliwiało to uznanie powstałych w ten sposób struktur za związki chemiczne w pełnym znaczeniu tego terminu. Granica między oddziaływaniami międzycząsteczkowymi i wiązaniami jest jednak płynna. Na przykład wiązanie wodorowe - jeśli występuje w obrębie jednej cząsteczki jest często traktowane jak słabe wiązanie chemiczne, jeśli jednak wiąże ono dwie lub więcej cząsteczek w duże konglomeraty o zmiennym składzie, można je traktować jako oddziaływanie międzycząsteczkowe. Tworzeniem się tego rodzaju konglomeratów powiązanych rozmaitymi oddziaływania międzycząsteczkowymi zajmuje się chemia supramolekularna.

Wiązanie jonowe to rodzaj wiązania chemicznego. Istotą tego wiązania, jest utworzenie pary jonowej na skutek przeskoku jednego lub więcej elektronów z jednego atomu na drugi. Powstałe w ten sposób różnoimienne jony są z sobą związane zwykłym oddziaływaniem elektrostatycznym.

Wiązania jonowe powstają między atomami o bardzo dużej różnicy elektroujemności, co oznacza w praktyce, że występują one tylko między atomami metali i wodoru a atomami pierwiastków niemetalicznych.

Związki posiadające wiązania jonowe są zdolne do dysocjacji elektrolitycznej, t.j. do rozpadu na wolne jony pod wpływem działania rozpuszczalników polarnych, lub na skutek silnego ogrzewania. Stopy i roztwory związków chemicznych posiadających wiązania jonowe są elektrolitami tzn. są zdolne do przewodzenia prądu elektrycznego.

Wiązanie jonowe czy kowalencyjne

Z formalnego punktu widzenia przyjmuje się, że wiązania jonowe występują między atomami, których różnica elektroujemności jest nie mniejsza niż 1.7 w skali Paulinga. W rzeczywistości jednak nie istnieją czyste wiązania jonowe i każde z nich ma też pewne cechy kowalencyjnego, co powoduje, że granica między tymi dwoma rodzajami wiązań jest bardzo płynna.

W chemii kwantowej przyjmuje się, że wiązanie jonowe ma miejsce wtedy, gdy teoretycznie obliczona energia orbitali molekularnych, przy założeniu, że wiązanie ma jednak charakter kowalencyjny, jest większa od potencjału jonizacyjnego atomu, który jest donorem (dostarczycielem) elektronu dla drugiego atomu. Obliczenia teoretyczne energii takich hipotetycznych orbitali są jednak wysoce dyskusyjne.

Praktycznie, aby ustalić czy wiązanie jest jonowe czy kowalencyjne, wykonuje się pomiar gęstości elektronowej wokół atomów tworzących wiązanie za pomocą rentgenografii strukturalnej. Jeśli w przestrzeni między atomami występuje obszar gdzie gęstość elektronowa jest tak mała, że nie da się jej zmierzyć, a zatem chmury elektronowe wokół obu atomów są wyraźnie rozdzielone, to przyjmuje się, że wiązanie ma istotnie charakter jonowy.

Wiązanie jonowe to rodzaj wiązania chemicznego. Istotą tego wiązania, jest utworzenie pary jonowej na skutek przeskoku jednego lub więcej elektronów z jednego atomu na drugi. Powstałe w ten sposób różnoimienne jony są z sobą związane zwykłym oddziaływaniem elektrostatycznym.

Wiązania jonowe powstają między atomami o bardzo dużej różnicy elektroujemności, co oznacza w praktyce, że występują one tylko między atomami metali i wodoru a atomami pierwiastków niemetalicznych.

Związki posiadające wiązania jonowe są zdolne do dysocjacji elektrolitycznej, t.j. do rozpadu na wolne jony pod wpływem działania rozpuszczalników polarnych, lub na skutek silnego ogrzewania. Stopy i roztwory związków chemicznych posiadających wiązania jonowe są elektrolitami tzn. są zdolne do przewodzenia prądu elektrycznego.

Wiązanie jonowe czy kowalencyjne

Z formalnego punktu widzenia przyjmuje się, że wiązania jonowe występują między atomami, których różnica elektroujemności jest nie mniejsza niż 1.7 w skali Paulinga. W rzeczywistości jednak nie istnieją czyste wiązania jonowe i każde z nich ma też pewne cechy kowalencyjnego, co powoduje, że granica między tymi dwoma rodzajami wiązań jest bardzo płynna.

W chemii kwantowej przyjmuje się, że wiązanie jonowe ma miejsce wtedy, gdy teoretycznie obliczona energia orbitali molekularnych, przy założeniu, że wiązanie ma jednak charakter kowalencyjny, jest większa od potencjału jonizacyjnego atomu, który jest donorem (dostarczycielem) elektronu dla drugiego atomu. Obliczenia teoretyczne energii takich hipotetycznych orbitali są jednak wysoce dyskusyjne.

Praktycznie, aby ustalić czy wiązanie jest jonowe czy kowalencyjne, wykonuje się pomiar gęstości elektronowej wokół atomów tworzących wiązanie za pomocą rentgenografii strukturalnej. Jeśli w przestrzeni między atomami występuje obszar gdzie gęstość elektronowa jest tak mała, że nie da się jej zmierzyć, a zatem chmury elektronowe wokół obu atomów są wyraźnie rozdzielone, to przyjmuje się, że wiązanie ma istotnie charakter jonowy.

Wiązanie metaliczne - ogólna nazwa dla wszelkich wiązań chemicznych występujących bezpośrednio między atomami metali.

Wiązania między atomami metalu, jeśli występują w izolowanej formie (np. w związkach metaloorganicznych) są w zasadzie typowymi wiązaniami kowalencyjnymi, wyróżniają się jednak w stosunku do analogicznych wiązań między niemetalami dwiema istotnymi cechami:

ulegają one łatwiejszej polaryzacji pod wpływem np. pola elektrycznego ze względu na to, że ogólnie w metalach elektrony walencyjne są słabiej związane z jądrami atomów niż w niemetalach

nawet jeśli formalnie są wiązaniami pojedynczymi, ze względu na występowanie w metalach dużej liczby walencyjnych orbitali d zachodzi zjawisko ich nakładania się, co powoduje że wiązania te nabierają często charakteru częściowo wielokrotnego.

Cechy te powodują, że w kryształach metali powstają pasma zdelokalizowanych elektronów, które mogą swobodnie się przemieszczać pod wpływem przyłożonego napięcia elektrycznego, dzięki czemu metale są dobrymi przewodnikami elektrycznymi. Ubocznym skutkiem tej delokalizacji jest też istnienie w metalach trójwymiarowej sieci silnych wiązań, co warunkuje dużą wytrzymałość mechaniczną metali, wysokie temperatury topnienia, kowalność, duży współczynnik rozszerzalności cieplnej i inne cechy charakterystyczne dla metali.

Wiązania metaliczne tworzą się między atomami metali w kryształach metali lub ich stopów. Wiązanie to polega na elektrostatycznym przyciąganiu między dodatnimi zrębami (rdzeniami) atomów osadzonych w węzłach sieci krystalicznej a przemieszczającymi się między nimi elektronami walencyjnymi tych atomów (tzw. gazem elektronowym). Ten rodzaj wiązania odpowiedzialny jest za wiele cech typowych dla metali, np. za przewodzenie prądu elektrycznego czy kowalność.

Wiązanie metaliczne

Metale charakteryzują się specyficznymi właściwościami polegającymi na dobrym przewodnictwie elektrycznym i cieplnym, co jest skutkiem łatwego przemieszczania się elektronów wewnątrz sieci krystalicznej metalu. Kryształ metalu (II.2.3.1.4) zbudowany jest z dodatnich jonów metalu osadzonych w węzłach sieci, między którymi poruszają się elektrony walencyjne. Elektrostatyczne oddziaływanie jonów i elektronów utrzymuje kryształ w całości. Typ sieci i odległości między atomami są charakterystyczne dla danego metalu. Znajdując się wewnątrz sieci krystalicznej elektrony, tworząc tzw. gaz elektronowy, ulegają oddziaływaniu kilku sąsiednich jonów, co powoduje rozmycie się ściśle zdefiniowanych poziomów energetycznych w pasmo przewodnictwa. Cechą charakterystyczną wiązania metalicznego jest delokalizacja elektronów i łatwość ich przemieszczania pod wpływem zewnętrznego pola elektrycznego.

GAZ ELEKTRONOWY

zbiór swobodnych elektronów poruszających się w metalu lub półprzewodniku. Traktowanie swobodnych elektronów jako gazu ułatwia zrozumienie wielu zjawisk zachodzących w metalach, a w rezultacie zgodny z przebiegiem eksperymentu opis wielu ich własności; w temp., w których metale są w stanie stałym, własności g.e. zasadniczo różnią się od własności gazu doskonałego i g.e. traktowany jest ja k gaz zdegenerowany (Fermiego gaz).

Przewodnictwo elektronowe (przewodnictwo typu n) - to przenoszenie ładunku elektrycznego przez ciało pod działaniem zewnętrznego pola elektrycznego w którym nośnikiem ładunków są elektrony. W modelu pasmowym krystalicznych ciał stałych zjawisko polegające na tym, że elektrony zajmujące stany kwantowe w obrębie pasma przewodnictwa przesuwają się do sąsiednich nieobsadzonych stanów kwantowych w obrębie tego pasma, w kierunku przeciwnym do kierunku wektora pola elektrycznego.

W przewodnictwie elektronowym uczestniczą jedynie elektrony. W metalach elektrony przewodnictwa stanowią elektrony walencyjne poszczególnych atomów. W sieci krystalicznej odrywają się one od swoich atomów i zaczynają swobodnie poruszać się w całej objętości metalu, tworząc tzw. gaz elektronowy. Koncentracja elektronów przewodnictwa w metalach nie zależy od temperatury, natomiast ruchliwość elektronów maleje ze wzrostem temperatury (wskutek swoistego tarcia spowodowanego zderzeniami elektronów z drgającą nieharmonicznie siecią krystaliczną), co w konsekwencji powoduje zmniejszenie przewodnictwa elektrycznego właściwego. Dla metali spełnione jest prawo Ohma.

Napięcie powierzchniowe – występujące na styku powierzchni cieczy z ciałem stałym, gazowym lub inną cieczą zjawisko fizyczne polegające na powstawaniu dodatkowych sił działających na powierzchnię cieczy w sposób kurczący ją (dla powierzchni wypukłej przyciągający do wnętrza cieczy, dla wklęsłej odwrotnie), a także wielkość fizyczna ujmująca je ilościowo. Zjawisko to ma swoje źródło w siłach przyciągania pomiędzy molekułami cieczy. Występuje ono zawsze na granicy faz termodynamicznych, dlatego zwane jest też napięciem międzyfazowym.

Efektem napięcia powierzchniowego jest np. utrudnione zanurzanie w cieczy ciał niepodatnych na zwilżanie tą cieczą (znika ono w momencie całkowitego zanurzenia takiego ciała). Innym zjawiskiem związanym z napięciem powierzchniowym jest podnoszenie się (np. woda) lub opadanie (np. rtęć) cieczy w wąskich rurkach, tzw. kapilarach – zjawisko to należy do zjawisk kapilarnych.

Wysokie napięcie powierzchniowe na granicy faz A i B oznacza, że siły spójności (kohezji) wewnątrz faz A-A i B-B są większe niż siły przylegania (adhezji) na granicy faz A-B.

Substancjami zmniejszającymi napięcie powierzchniowe są tzw. surfaktanty czyli związki powierzchniowo czynne np. emulgatory oraz mydła i detergenty. Podobne do siebie charakterem ciecze z reguły mieszają się (reguła "podobne w podobnym"), natomiast nie chcą się mieszać ciecze polarne z niepolarnymi (zobacz mieszalność cieczy). Surfaktantami są najczęściej cząsteczki posiadające polarną głowę (np. spolaryzowane grupy funkcyjne ulegające w roztworze jonizacji) oraz apolarny (niepolarny) ogon (np. łańcuch alifatyczny). Ich działanie najczęściej polega na adsorpcji cząsteczek na granicy dwu faz w ten sposób, że część polarna jest skierowana do fazy bardziej polarnej, co umożliwia utworzenie emulsji (roztworu koloidalnego).

Przykładem emulsji może być majonez – połączenie oleju i wody jest możliwe dzięki emulgatorowi – lecytynie pochodzącej z żółtka jaja kurzego. Wykorzystanie mydła i detergentów to przykład tzw. solubilizacji, gdzie cząsteczki surfaktantu otaczają niepolarną cząstkę "brudu" adsorbując się na niej niepolarnymi ogonami a pozostawiając polarne głowy w kontakcie z polarną fazą wodną (polarny zespół "brudu" z surfaktantem rozpuszcza się w wodzie).

Entalpia to termodynamiczna funkcja stanu, którą definiuje zależność:

H=U+pcdot{V}

gdzie U - energia wewnętrzna, p - ciśnienie, V - objętość

Entalpia jest funkcją stanu z której jest dogodnie korzystać przy przemianach prowadzonychpod stałym ciśnieniem dla układów, których objętość może się zmieniać w czasie przemiany.Dla takich przemian zmiana entalpii jaka się w ich czasie odbywa równa jest ciepłu tych przemian.Przemiany takie są bardzo często spotykane w praktyce (silniki atmosferyczne, przemianyfazowe, reakcje chemiczne w roztworach, itd, itp.) stąd entalpia jest bardzo często wykorzystywaną funkcją stanu.


Wyszukiwarka

Podobne podstrony:
chemia pytania wiązania jonowe i kowalencyjne
wiazania jonowe BTL3IIAFMOE74W3MSFJGHJBUIBBWBP6ML5EVZVI
chem3, Wiązania jonowe tworzą: a)pierwiastki gr. 1 i 2 oprócz H i Be z pierwiastkami gr. 16 i 17; b)
Wiązanie jonowe
kwasy i alkohole - chemia, Wiązanie jonowe występuje również w NaOH
chemia pytania wiązania jonowe i kowalencyjne
10) Wiązania chemiczne, wiązanie jonowe
wiazania jonowe
Wyklad 1 Wiazania
Wyklad 4 Wiazania chemiczne w cialach stalych
Wiązania chemiczne (II)
6 wykˆad WiĄzania chemiczne[F]
Chemia wyklad I i II (konfiguracja wiÄ…zania Pauling hybrydyzacja wiazania pi i sigma)
3 Równowagi jonowe w roztworach
Wykład 1, budowa atomu, wiązania chemiczne
Enzymatyczna redukcja związków karbonylowych i zawierających wiązania C=C
Pecznienie to zdolnosc odwodnionych koloidow do wiazania wody
2 Atom i cząstka Wiązania chemiczne klucz
Rozpylanie jonowe

więcej podobnych podstron