Dioda elektroluminescencyjna, dioda świecąca, LED (ang. light-emitting diode) – dioda zaliczana do półprzewodnikowych przyrządów optoelektronicznych, emitujących promieniowanie w zakresie światła widzialnego, podczerwieni i ultrafioletu.
Działanie diody elektroluminescencyjnej (LED) opiera się na zjawisku rekombinacji nośników ładunku (rekombinacja promienista). Zjawisko to zachodzi w półprzewodnikach wówczas, gdy elektrony przechodząc z wyższego poziomu energetycznego na niższy zachowują swój pseudo-pęd. Jest to tzw. przejście proste. Podczas tego przejścia energia elektronu zostaje zamieniona na kwant promieniowania elektromagnetycznego. Przejścia tego rodzaju dominują w półprzewodnikach z prostym układem pasmowym, w którym minimum pasma przewodnictwa i wierzchołkowi pasma walencyjnego odpowiada ta sama wartość pędu.
Główne parametry diod LED:
sprawność kwantowa (zewnętrzna)
długość fali emitowanego światła
szerokość widmowa
moc wyjściowa
częstotliwość graniczna
czas narastania lub opadania
maksymalny prąd (przewodzenia) zasilający (w mA)
maksymalne napięcie wsteczne (do kilku V)
Luminescencja jest zjawiskiem fizycznym polegającym na emitowaniu przez materię promieniowania elektromagnetycznego pod wpływem czynnika pobudzającego, które dla pewnych długości fali przewyższa emitowane przez tę materię promieniowanie temperaturowe. W diodzie LED mamy do czynienia z tzw. elektroluminescencją, przy wytworzeniu której źródłem energii pobudzającej jest prąd elektryczny dostarczony z zewnątrz, czasami pole elektryczne. Najefektywniejsza elektroluminescencja w półprzewodniku powstaje w wyniku rekombinacji swobodnych nośników ładunku w złączu p-n, gdy jest ono spolaryzowane w kierunku przewodzenia. Intensywność świecenia zależy od wartości doprowadzonego prądu, przy czym zależność ta jest liniowa w dużym zakresie zmian prądu. Zjawiska przeszkadzające elektroluminescencji to pochłanianie wewnętrzne i całkowite odbicie wewnętrzne.
Zalety diod elektroluminescencyjnych:
mały pobór prądu
mała wartość napięcia zasilającego
duża sprawność
małe straty energii
małe rozmiary
duża trwałość
duża wartość luminacji
IR – emitujące promieniowanie podczerwone – wykorzystywane w łączach światłowodowych, a także w urządzeniach zdalnego sterowania
HBLED, High Brightness LED – diody o wysokiej jasności świecenia; za takie uważa się, których jasność przekracza 0,2 cd; znajdują one zastosowanie w miejscach, gdzie zwykle używa się tradycyjnych źródeł światła – w sygnalizacji ulicznej, w oświetleniu pojazdów, w latarkach
RGB LED – dioda mająca struktury do generowania trzech podstawowych barw (czerwony, zielony, niebieski), a co za tym idzie, przez możliwość ich mieszania, praktycznie dowolnej barwy
RGBA LED – rozszerzenie struktury RGB o dodatkową diodę o kolorze bursztynowym (ang. Amber) powiększającą osiągalną przestrzeń barw
RGBW LED – rozszerzenie struktury RGB o dodatkową diodę o kolorze białym (ang. White). Przykładem diody RGBW jest dioda firmy CREE model MC-E RGBW
warm white LED – Dioda LED generująca światło białe ciepłe (według normy PN-EN 12464-1 jest to temperatura barwowa poniżej 3300 K). Diody ciepłe mają najbardziej zbliżoną temperaturę barwową do światła żarówki.
neutral white LED – Dioda LED generująca światło białe neutralne (według normy PN-EN 12464-1 jest to temperatura barwowa 3300 K - 5300 K)
cool white LED – Dioda LED generująca światło białe zimne (według normy PN-EN 12464-1 jest to temperatura barwowa powyżej 5300 K)
High Power LED lub Power LED - Dioda LED wysokiej mocy, do poprawnej pracy wymaga zapewnienia odpowiedniego chłodzenia i źródła prądowego do zasilania. Białe diody tego typu mają najczęściej emiter wielkości około 1mm2, jasność około 100 lm przy prądzie 350mA i pobieranej mocy około 1W . Maksymalny prąd podawany przez producentów to zazwyczaj 0,7÷1,5A na 1mm2 struktury (maksymalny prąd zależy w głównej mierze od chłodzenia struktury świecącej diody). Firmy produkujące tego typu LEDy to (przykładowe modele w nawiasach): Philips Lumileds Lighting Company (Luxeon K2, Luxeon Rebel), CREE (XR-C, XR-E, XP-C, XP-E, XP-G, MC-E), Seoul Semiconductors (SSC-P4, SSC-P7), Osram Opto Semiconductors GmbH (Ostar, Oslon), Luminus Devices (SST-50, SST-90) Nichia.
Tranzystor - trójelektrodowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Według oficjalnej dokumentacji z Laboratoriów Bella nazwa urządzenia wywodzi się od słów transkonduktancja (transconductance) i warystor (varistor), jako że "element logiczny należy do rodziny warystorów i ma transkonduktancję typową dla elementu z współczynnikiem wzmocnienia co czyni taką nazwę opisową"[1].
Znaczenie [edytuj]
Wynalezienie tranzystora uważa się za przełom w elektronice, zastąpił on bowiem duże, zawodne lampy elektronowe, dając początek coraz większej miniaturyzacji przyrządów i urządzeń elektronicznych, zwłaszcza że dzięki mniejszemu poborowi mocy można było zmniejszyć też współpracujące z tranzystorami elementy bierne.
Wyróżnia się dwie główne grupy tranzystorów, różniące się zasadniczo zasadą działania:
Tranzystory bipolarne, w których prąd wyjściowy jest funkcją prądu wejściowego (sterowanie prądowe).
Tranzystory unipolarne (tranzystory polowe), w których prąd wyjściowy jest funkcją napięcia (sterowanie napięciowe).
Innym podziałem tranzystorów jest podział ze względu na materiał półprzewodnikowy z jakiego są wykonywane tranzystory:
german - materiał historyczny, obecnie rzadko stosowany
krzem - podstawowy materiał szeroko stosowany
arsenek galu - stosowany w technice bardzo wysokich częstotliwości
Ze względu na zastosowania tranzystory dzieli się na:
małej mocy, małej częstotliwości
dużej mocy, małej częstotliwości
małej mocy, dużej częstotliwości
dużej mocy, dużej częstotliwości
tranzystory przełączające (impulsowe)
Tranzystor ze względu na swoje właściwości wzmacniające znajduje bardzo szerokie zastosowanie. Jest wykorzystywany do budowy wzmacniaczy różnego rodzaju: różnicowych, operacyjnych, mocy (akustycznych), selektywnych, pasmowych. Jest kluczowym elementem w konstrukcji wielu układów elektronicznych, takich jak źródła prądowe, lustra prądowe, stabilizatory, przesuwniki napięcia, klucze elektroniczne, przerzutniki czy generatory.
Ponieważ tranzystor może pełnić rolę klucza elektronicznego, z tranzystorów buduje się także bramki logiczne realizujące podstawowe funkcje boolowskie, co stało się motorem do bardzo dynamicznego rozwoju techniki cyfrowej w ostatnich kilkudziesięciu latach. Tranzystory są także podstawowym budulcem wszelkiego rodzaju pamięci półprzewodnikowych (RAM, ROM itp.).
Dzięki rozwojowi technologii oraz ze względów ekonomicznych większość wymienionych wyżej układów tranzystorowych realizuje się w postaci układów scalonych. Co więcej, niektórych układów, jak np. mikroprocesorów liczących sobie miliony tranzystorów, nie sposób byłoby wykonać bez technologii scalania.
W roku 2001 holenderscy naukowcy z Uniwersytetu w Delft zbudowali tranzystor składający się z jednej nanorurki węglowej, jego rozmiar wynosi zaledwie jeden nanometr, a do zmiany swojego stanu (włączony / wyłączony) potrzebuje on tylko jednego elektronu. Naukowcy przewidują, że ich wynalazek pozwoli na konstruowanie układów miliony razy szybszych od obecnie stosowanych, przy czym ich wielkość pozwoli na dalszą miniaturyzację elektronicznych urządzeń. [2]
Układ scalony (ang. integrated circuit, chip, potocznie kość) – zminiaturyzowany układ elektroniczny zawierający w swym wnętrzu od kilku do setek milionów podstawowych elementów elektronicznych, takich jak tranzystory, diody, rezystory, kondensatory.
Budowa [edytuj]
Zwykle zamknięty w hermetycznej obudowie – szklanej, metalowej, ceramicznej lub wykonanej z tworzywa sztucznego.
Ze względu na sposób wykonania układy scalone dzieli się na główne grupy:
monolityczne, w których wszystkie elementy, zarówno elementy czynne jak i bierne, wykonane są w monokrystalicznej strukturze półprzewodnika
hybrydowe – na płytki wykonane z izolatora nanoszone są warstwy przewodnika oraz materiału rezystywnego, które następnie są wytrawiane, tworząc układ połączeń elektrycznych oraz rezystory. Do tak utworzonych połączeń dołącza się indywidualne, miniaturowe elementy elektroniczne (w tym układy monolityczne). Ze względu na grubość warstw rozróżnia się układy:
cienkowarstwowe (warstwy ok. 2 mikrometrów)
grubowarstwowe (warstwy od 5 do 50 mikrometrów)
Większość stosowanych obecnie układów scalonych jest wykonana w technologii monolitycznej.
Ze względu na stopień scalenia występuje, w zasadzie historyczny, podział na układy:
małej skali integracji (SSI – small scale of integration)
średniej skali integracji (MSI – medium scale of integration)
dużej skali integracji (LSI – large scale of integration)
wielkiej skali integracji (VLSI – very large scale of integration)
ultrawielkiej skali integracji (ULSI – ultra large scale of integration)
Ponieważ w układach monolitycznych praktycznie wszystkie elementy wykonuje się jako tranzystory, odpowiednio tylko przyłączając ich końcówki, dlatego też często mówi się o gęstości upakowania tranzystorów na mm².
Układ AMD AM9080ADC / C8080A CPU 8080
W dominującej obecnie technologii wytwarzania monolitycznych układów scalonych (technologia CMOS) często używanym wskaźnikiem technicznego zaawansowania procesu oraz gęstości upakowania elementów układów scalonych jest minimalna długość kanału tranzystora (patrz Tranzystor polowy) wyrażona w mikrometrach lub nanometrach – długość kanału jest nazywana rozmiarem charakterystycznym i im jest on mniejszy, tym upakowanie tranzystorów oraz ich szybkość działania są większe. W najnowszych technologiach, w których między innymi produkowane są procesory firm Intel i AMD, minimalna długość bramki wynosi 90nm. W roku 2005 wdrożono do masowej produkcji układy wykonane w technologii 65nm, w 2008 r. Intel wyprodukował pierwszy procesor w technologii 45nm, a w 2009 w ofercie Intela pojawiły się procesory w technologii 32nm (mikroarchitektury Westmere oraz Sandy Bridge). Na kolejne lata Intel zapowiada przełamanie kolejnych barier miniaturyzacji. W 2012 roku oczekiwana jest premiera 22nm mikroarchitektury Haswell.
Zarejestrowane topografie układów scalonych podlegają ochronie, przy czym według prawa własności przemysłowej układem scalonym jest wytwór przestrzenny, utworzony z elementów z materiału półprzewodnikowego tworzącego ciągłą warstwę, ich wzajemnych połączeń przewodzących i obszarów izolujących, nierozdzielnie ze sobą sprzężonych, w celu spełniania funkcji elektronicznych.
Odsłonięte części warstwy epitaksjalnej są domieszkowane. Robi się to dwiema metodami:
Dyfuzja domieszek – w wysokiej temperaturze (ok. 1200 stopni) domieszki niesione przez gaz szlachetny dyfundują w odsłonięte miejsca półprzewodnika; można bardzo precyzyjnie określić koncentrację nośników i głębokość domieszkowania. Dyfuzja domieszek jest powolnym procesem.
Implantacja jonów – zjonizowane domieszki są przyspieszane i "wbijane" w półprzewodnik. Proces jest szybki i precyzyjny, ale drogi.
Wykonanie połączeń
Montaż
Cięcie podłoża na indywidualne układy piłą diamentową lub laserem.
Indywidualne układy są testowane testerem ostrzowym.
Wykonywane są połączenia struktury z wyprowadzeniami zewnętrznymi za pomocą cienkich drucików aluminiowych lub złotych.
Mikroelektronika – dziedzina elektroniki, która zajmuje się procesami produkcji układów scalonych oraz komponentów elektronicznych o bardzo małych rozmiarach. Urządzenia te są produkowane głównie z półprzewodników w technologii krzemowej.
małe rozmiary oraz mały pobór mocy
duża szybkość działania
niska cena (uzysk musi być bliski 100%)
drogi prototyp
problemy z projektowaniem
poprawa niezawodności i jakości
integracja funkcji
obniżenie kosztów produkcji
zmniejszenie ciężaru i wymiarów
miniaturyzacja (rozumiana jako stopień scalenia)
Większość zwykłych podzespołów elektronicznych ma swoje odpowiedniki mikroelektroniczne: tranzystory, kondensatory, induktory (solenoidy), rezystory, diody oraz oczywiście izolatory i przewodniki - wszystkie występują także w urządzeniach mikroelektronicznych.
Cyfrowe układy scalone składają się głównie z tranzystorów.
Układy analogowe lub mieszane zazwyczaj zawierają także rezystory i kondensatory. Induktory są używane w analogowych obwodach wysokich częstotliwości, gdyż w przypadku niskich częstotliwości zajmują zbyt dużo miejsca na chipach.
W miarę postępu techniki, rozmiary komponentów mikroelektronicznych ciągle maleją, zaś ilość tranzystorów podwaja się co około 18 miesięcy (prawo Moore'a). W tak małej skali znaczne rozmiary przybierają zjawiska pasożytnicze, zaniedbywalne dla większych wymiarów urządzeń. Celem inżynierów mikroelektroników jest znaleźć sposoby na minimalizację lub zniesienie tych negatywnych efektów, przy ciągłej miniaturyzacji i zwiększaniu wydajności układów elektronicznych.
Nanoelektronika to termin odnoszący się do komponentów elektronicznych (zwykle tranzystorów) opartych o struktury nanometrowe. Przy tak małych rozmiarach ogromne znaczenie mają efekty kwantowe takie jak zjawiska spinowe oraz niepodzielność i dyskretność stanów elektronowych.
Pole magnetyczne — stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego lub obu.
Pole magnetyczne jest polem wektorowym. Wielkościami fizycznymi używanymi do opisu pola magnetycznego są: indukcja magnetyczna B oraz natężenie pola magnetycznego H. Między tymi wielkościami zachodzi związek
gdzie μ – przenikalność magnetyczna ośrodka.
Obrazowo pole magnetyczne przedstawia się jako linie pola magnetycznego. Kierunek pola określa ustawienie igły magnetycznej lub obwodu, w którym płynie prąd elektryczny.
Pole magnetyczne kołowe jest to pole, którego linie układają się we współśrodkowe okręgi. Pole takie jest wytwarzane przez nieskończenie długi prostoliniowy przewodnik. Indukcja magnetyczna takiego pola maleje odwrotnie proporcjonalnie do odległości od przewodnika.
Pole magnetyczne definiuje się przez siłę, jaka działa na poruszający się ładunek w tym polu. W układzie SI siła ta wyraża się wzorem:
gdzie:
– siła działająca na ładunek,
– symbol iloczynu wektorowego,
q – ładunek elektryczny,
– prędkość ładunku,
– wektor indukcji magnetycznej.
Wzór na siłę zapisany skalarnie:
gdzie α to kąt pomiędzy wektorem prędkości a indukcji magnetycznej
Stałe pole magnetyczne jest wywoływane przez ładunki elektryczne znajdujące się w ruchu jednostajnym. Dlatego też, przepływ prądu (który też jest ruchem ładunków elektrycznych) wytwarza pole magnetyczne. Ładunki poruszające się ruchem zmiennym (np. hamowane) powodują powstawanie zmiennego pola magnetycznego, które rozchodzi się jako fala elektromagnetyczna. Powstawanie pola magnetycznego na skutek przepływu prądu elektrycznego i innych ruchów ładunków elektrycznych opisuje prawo Biota-Savarta, oraz prawo Ampera, które w postaci uogólnionej wchodzą w skład równań Maxwella.
Niektóre materiały magnetyczne, jak np. ferromagnetyki, wytwarzają stałe pole magnetyczne. Jest to spowodowane superpozycją orbitalnych momentów magnetycznych elektronów (w półklasycznym modelu Bohra przez orbitalny ruch obdarzonych ładunkiem elektrycznym elektronów wokół jądra). Zjawisko to jest dokładniej wyjaśnione w opisie magnetyzmu.
Pole magnetyczne jest też wytwarzane przez zmienne pole elektryczne. Z kolei zmienne pole magnetyczne wytwarza pole elektryczne. Takie wzajemnie indukowanie się pól zachodzi w fali elektromagnetycznej. Stałe w czasie pole magnetyczne nie wytwarza pola elektrycznego - wynika to wprost z równań Maxwella.
Pole magnetyczne jest bezźródłowe, co wyraża prawo Gaussa dla magnetyzmu. Wynika z niego, że linie pola magnetycznego tworzą zamknięte krzywe, nie zaczynają się, ani się nie kończą — inaczej niż w polu elektrycznym, gdzie linie pola elektrostatycznego wychodzą z ładunków dodatnich i zbiegają się w ładunkach ujemnych.
Siła Lorentza — siła jaka działa na cząstkę obdarzoną ładunkiem elektrycznym poruszającą się w polu elektromagnetycznym. Wzór podany został po raz pierwszy przez Lorentza i dlatego nazwano go jego imieniem.
Wzór określa, jak siła działająca na ładunek zależy od pola elektrycznego i pola magnetycznego (składników pola elektromagnetycznego):
gdzie:
E – natężenie pola elektrycznego (w woltach / metr),
B – indukcja magnetyczna (w teslach),
q – ładunek elektryczny cząstki (w kulombach),
× – iloczyn wektorowy.
Terminem siła Lorentza określa się czasem samą składowa magnetyczną tej siły [1]
Prawo Ampère'a prawo wiążące indukcję magnetyczną wokół przewodnika z prądem z natężeniem prądu elektrycznego przepływającego w tym przewodniku. W fizyce jest to magnetyczny odpowiednik prawa Gaussa i należy do praw fizycznych wynikających z matematycznego twierdzenia Stokesa.
W wersji rozszerzonej przez J.C. Maxwella prawo to opisuje powstawanie pola magnetycznego w wyniku ruchu ładunku lub zmiany natężenia pola elektrycznego.
Ampère, będąc zwolennikiem oddziaływania na odległość a nie oddziaływania przez pole, nie wyraził prawa w postaci równania pola, opisał jedynie zależność siły oddziaływania od odległości.
We współczesnej postaci prawo to brzmi:
Wartość całki okrężnej wektora indukcji magnetycznej, wytworzonego przez stały prąd elektryczny w przewodniku wzdłuż linii zamkniętej otaczającej prąd, jest równa sumie algebraicznej natężeń prądów przepływających (strumieniowi gęstości prądu) przez dowolną powierzchnię objętą przez tę linię.
Diamagnetyzm – zjawisko polegające na indukcji w ciele znajdującym się w zewnętrznym polu magnetycznym pola przeciwnego, osłabiającego działanie zewnętrznego pola. Zjawisko odwrotne do diamagnetyzmu to paramagnetyzm. Należy jednak zaznaczyć, że paramagnetyzm jest zjawiskiem "odwrotnym" tylko w sensie makroskopowej obserwacji zachowania się substancji w polu magnetycznym (diamagnetyk jest wypychany z pola magn., a paramagnetyk – wciągany). Stoją za tymi zachowaniami jednak całkowicie inne zjawiska fizyczne: o diamagnetyku czytaj niżej, a w paramagnetyku porządkują się momenty magnetyczne elektronów.
Przyczyną diamagnetyzmu jest fakt, że zewnętrzne pole magnetyczne zmienia tor elektronów na orbitach (jakby indukuje w układzie prąd elektryczny), który powoduje powstanie pola magnetycznego skierowanego przeciwnie do pola zewnętrznego.
Diamagnetyzm występuje we wszystkich substancjach, ale zwykle jest maskowany przez silniejszy paramagnetyzm. Wyjątkiem są przeważnie związki chemiczne posiadające wiązania wielokrotne lub układ aromatyczny.
Diamagnetyki samorzutnie nie wykazują właściwości magnetycznych - nie są przyciągane przez magnes. Umieszczenie diamagnetyka w zewnętrznym polu magnetycznym powoduje powstanie w tym materiale pola magnetycznego skierowanego przeciwnie. Dla tych ciał względna przenikalność magnetyczna μ ośrodka jest nieco mniejsza od jedności (diamagnetyki nieznacznie osłabiają pole magnetyczne). Do diamagnetyków zalicza się: gazy szlachetne, prawie wszystkie metale i metaloidy nie wykazujące własności para- lub ferromagnetycznych (np: bizmut, krzem, cynk, magnez, złoto, miedź) a także fosfor, grafit, woda oraz wiele związków chemicznych. Diamagnetyczne są też DNA i wiele białek.
Zjawisko diamagnetyzmu zostało po raz pierwszy opisane przez holenderskiego lekarza i przyrodnika S.J. Burgmansa w 1778 roku. Nazwę "diamagnetyzm" stworzył jednak i rozpowszechnił Michael Faraday w 1846 r.
Paramagnetyzm - zjawisko magnesowania się makroskopowego ciała w zewnętrznym polu magnetycznym w kierunku zgodnym z kierunkiem pola zewnętrznego. Substancja wykazująca takie własności to paramagnetyk, jest on przyciągany przez magnes, jednak znacznie słabiej niż ferromagnetyk. W niezbyt niskich temperaturach oraz dla niezbyt silnych pól magnetycznych paramagnetyki wykazują liniową wielkość namagnesowania od pola zewnętrznego, co wyraża wzór:
gdzie:
M - namagnesowanie (moment magnetyczny jednostki objętości substancji)
χ - objętościowa podatność magnetyczna
W niskich temperaturach lub dla bardzo silnych pól magnetycznych namagnesowanie traci liniową zależność od pola zewnętrznego i wykazuje nasycenie.
Podatność magnetyczna zależy od temperatury, zjawisko to ujmuje prawo Curie. Niektóre paramagnetyki w temperaturach niższych od pewnej charakterystycznej dla każdej substancji wartości, nazywanej punktem Curie, stają się ferromagnetykami.
Przyczyną paramagnetyzmu jest porządkowanie się spinów elektronów ciała zgodnie z liniami zewnętrznego pola magnetycznego, uporządkowaniu przeciwdziałają drgania cieplne cząsteczek. W niskich temperaturach lub w silnych polach magnetycznych dochodzi do uporządkowania niemal wszystkich dipoli magnetycznych elektronów w wyniku czego dochodzi do nasycenia. Właściwości paramagnetyczne posiadają substancje o niesparowanych elektronach.
Paramagnetyki mają przenikalność magnetyczną μ niewiele większą od jedności. Dla ferromagnetyków μ jest wielokrotnie większe od 1.
Przykłady paramagnetyków:
tlen O2
aluminium
platyna Pt
tlenek azotu (II) NO
Ferromagnetyzm – zjawisko, w którym materia wykazuje własne, spontaniczne namagnesowanie. Jest jedną z najsilniejszych postaci magnetyzmu i jest odpowiedzialny za większość magnetycznych zachowań spotykanych w życiu codziennym. Razem z ferrimagnetyzmem jest podstawą istnienia wszystkich magnesów trwałych (jak i zauważalnego przyciągania innych ferromagnetycznych metali przez magnesy trwałe).
Materiały, które wykazują ferromagnetyzm zwane są ferromagnetykami. Jest bardzo dużo ich krystalicznych przedstawicieli: żelazo, kobalt, nikiel oraz w niższych temperaturach również gadolin, terb, dysproz, holm i erb wśród pierwiastków oraz wiele stopów i związków chemicznych. Tabela po prawej ukazuje reprezentatywną ich listę, wraz z punktami Curie - temperaturami, powyżej których tracą one właściwości ferromagnetyczne.
Ferromagnetyczne stopy metali, których składniki w czystej formie nie wykazują ferromagnetyzmu, nazywane są stopami Heuslera.
Można również wytworzyć amorficzny (niekrystaliczny, bezpostaciowy) ferromagnetyczny stop metaliczny poprzez bardzo szybkie ochłodzenie płynnego stopu, co skutkuje niemal izotropowymi własnościami magnetycznymi. W zależności od składu chemicznego i obróbki cieplnej amorfiki mogą wykazywać bardzo niską koercję magnetyczną (np. poniżej 1 A/m), wysoką względną przenikalność magnetyczną (do wartości 106) oraz małą stratność właściwą z uwagi na niewielką grubość taśmy (co ogranicza prądy wirowe). Typowym takim materiałem jest stop metali przejściowych (zazwyczaj Fe, Co czy Ni, 80%) z półmetalami (B, C, Si, P), obniżającymi temperaturę topnienia stopu i ułatwiającymi osiągnięcie fazy amorficznej.
Jednym z przykładów takiego amorficznego stopu jest komercyjny stop Vitrovac 6025 (Co66Fe4Mo2B11.5Si16.5) z temp. Curie 483 K i magnetyczną polaryzacją nasycenia 0.55 T w temp. pokojowej (dla porównania: czyste żelazo: 1043K i 2.15 T).
Spin elektronu, oraz jego orbitalny moment pędu, wytwarza magnetyczny moment dipolowy. Elektron w ruchu, jako obdarzony ładunkiem elektrycznym, wytwarza pole magnetyczne.
W mechanice klasycznej ten układ odpowiada kulce, posiadającej ujemny ładunek elektryczny, krążącej wokół własnej osi (spin) oraz krążącej wokół jądra posiadającego dodatni ładunek elektryczny. Oba zjawiska podobnie jak kołowy przewodnik z prądem wytwarzają pole magnetyczne, ale elektron jako cząstka kwantowa posiada wyraźne różnice - spin może przyjmować tylko dwie wartości (umownie określane jako góra i dół), a orbitalny moment magnetyczny przyjmuje tylko określone wartości.
W wielu materiałach (ściślej tych, które posiadają zapełnione powłoki elektronowe) całkowity moment dipolowy wszystkich elektronów wynosi zero (tzw. sparowanie - taka sama liczba spinów góra i dół powoduje wzajemne znoszenie się ich momentów). Jedynie atomy z częściowo zapełnioną powłoką (niesparowanymi spinami) posiadają wypadkowy moment magnetyczny różny od zera. Dipole te ustawiają się równolegle do linii zewnętrznego pola, ale z ustawienia tego wytrącane są przez drgania termiczne. W takich materiałach wytwarza się wewnętrzne pole magnetyczne skierowane zgodnie z zewnętrznym polem magnetycznym. Materiały te to paramagnetyki (substancje o przeciwnych własnościach to diamagnetyki).
Wśród paramagnetyków są takie substancje w których oddziaływania między atomami powodują ustawianie sąsiednich dipoli magnetycznych w tym samym kierunku, nawet bez zewnętrznego pola magnetycznego, co sprawia że wszystkie dipole magnetyczne ustawione są w tym samym kierunku, materiały te posiadają pole magnetyczne pomimo braku zewnętrznego pola magnetycznego ( namagnesowanie spontaniczne). Drgania cieplne sieci wytrącają atomy z ich uporządkowania, aż w pewnej temperaturze zwanej temperaturą Curie drgania sieci są tak duże, że oddziaływanie atomów nie jest w stanie utrzymać jednakowego ustawienia dipoli magnetycznych, materiał przestaje być ferromagnetykiem. Utrzymanie dużych obszarów jednakowego namagnesowania wytwarza pole magnetyczne w dużym obszarze co jest stanem o bardzo dużej energii, dlatego kryształ może zmienić namagnesowanie części swoich obszarów tak by pole magnetyczne na zewnątrz ciała było jak najmniejsze, tak zachowuje się większość ferromagnetyków. Obszary o jednakowym namagnesowaniu nazywamy domenami magnetycznymi. W zależności od materiału domeny te mogą łatwo (ferromagnetyki miękkie) lub trudno (ferromagnetyki twarde) zmieniać kierunek namagnesowania oraz granice domen.
W ferromagnetykach miękkich bez obecności zewnętrznego pola magnetycznego domeny ustawiają się tak, by zminimalizować energię ciała jako całości. Wokół ciał takich pozostaje tylko niewielkie pole magnetyczne.
W ferromagnetykach twardych wykonanych w obecności silnego zewnętrznego pola magnetycznego uporządkowanie domen pozostaje nawet po usunięciu zewnętrznego pola magnetycznego i nie zmienia się, te materiały znane są one jako magnesy trwałe
A więc zwykły kawałek materiału ferromagnetycznego (np. żelaza) nie posiada wypadkowego momentu magnetycznego. Jeżeli jednak zostanie on umieszczony w zewnętrznym polu magnetycznym, następuje namagnesowanie, czyli uporządkowanie domen - taki ruch ich ścianek, aby możliwie największa objętość ciała posiadała momenty magnetyczne skierowane równolegle do kierunku pola magnetycznego. Rozmiary domen początkowo namagnesowanych w kierunku zbliżonym do kierunku pola magnesującego zwiększają się kosztem innych, przyłączając sąsiednie atomy. W silnym polu domeny o innych kierunkach pierwotnego namagnesowania obracają się. Ponieważ ruch ścianek domen jest procesem skokowym, obserwuje się charakterystyczną schodkową strukturę krzywej namagnesowania w funkcji zewnętrznego pola magnetycznego (zjawisko Barkhausena).
Wewnątrz ciała ferromagnetycznego pole może setki, nawet tysiące razy przewyższać przyłożone pole zewnętrzne. Domeny pozostaną jednakowo zorientowane nawet wówczas, gdy zewnętrzne pole zostanie usunięte, tworząc trwałą magnetyzację, która, jako funkcja zewnętrznego pola jest uwidoczniona na krzywej histerezy. Jednak wypadkowa magnetyzacja może być zniszczona poprzez podgrzanie, a następnie powolne oziębienie (czyli wyżarzanie) materiału, bez wpływu zewnętrznego pola.
Stopień samorzutnego namagnesowania (istnienia domen), całkowity w temperaturze zera bezwzględnego, w miarę wzrostu temperatury maleje - zwiększają się termiczne oscylacje atomów, "rywalizując" z ich ferromagnetyczną tendencją do odpowiedniego ustawiania się. Kiedy temperatura przekroczy pewną, dla danego materiału ściśle określoną granicę, zwaną punktem Curie, następuje przejście fazowe drugiego rodzaju i ciało traci swoje właściwości ferromagnetyczne, stając się paramagnetykiem.
Podstawy współczesnej teorii ferromagnetyzmu stworzyli, niezależnie od siebie, W. Heisenberg oraz J.I. Frenkel.
Prąd zmienny – prąd elektryczny, którego wartość natężenia zmienia się w czasie w dowolny sposób.
W zależności od charakteru tych zmian można wyróżnić następujące rodzaje prądu:
prąd nieokresowy
Wszystkie powyższe pozycje poza ostatnią są przypadkami szczególnymi prądu zmiennego i mają one swoje specjalne znaczenie w elektrotechnice i elektronice. Prąd zmienny nieokresowy może reprezentować prąd o dowolnej zmienności w czasie (czarna krzywa na rysunku), lub też prąd zmieniający się zgodnie z określoną funkcją matematyczną lub zjawiskiem matematycznym. Na przykład uderzenie pioruna powoduje powstanie fali udarowej o określonym kształcie, która przebiega jednorazowo, nie ma więc charakteru okresowego.
Często termin prąd zmienny stosowany jest do prądu okresowego o przebiegu sinusoidalnym.
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) – rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna i magnetyczna są prostopadłe do siebie, a obie są prostopadłe do kierunku rozchodzenia się promieniowania. Oba pola indukują się wzajemnie – zmieniające się pole elektryczne wytwarza zmienne pole magnetyczne, a zmieniające się pole magnetyczne wytwarza zmienne pole elektryczne. Źródłem zmiennego pola elektromagnetycznego jest przyspieszający ładunek elektryczny. Najczęściej źródłem tego promieniowania jest ładunek wykonujący drgania.
Promieniowanie elektromagnetyczne rozchodząc się objawia swe własności falowe zachowując się jak każda fala, ulega interferencji, dyfrakcji, spełnia prawo odbicia i załamania.
Rozchodzenie się fali w ośrodkach silnie zależy od właściwości tych ośrodków oraz częstotliwości fali. Fala rozchodząc się w ośrodku pobudza do drgań ładunki zawarte w cząsteczkach i atomach, najczęściej są to elektrony. Indukowane w ten sposób drgania elektronów są źródłem fal wtórnych, którą poprzez superpozycję z falą padającą zmieniają jej długość i prędkość rozchodzenia się.
Powstawanie i pochłanianie promieniowania elektromagnetycznego wiąże się ze zmianą energii cząstek obdarzonych ładunkiem elektrycznym, zwykle elektronów, jako cząstek o małej masie.
Własności promieniowania elektromagnetycznego silnie zależą od długości fali (częstotliwości promieniowania) i dlatego dokonano podziału promieniowania elektromagnetycznego ze względu na jego częstotliwość.
Emisja fal elektromagnetycznych wokół urządzenia zakłóca pracę wielu urządzeń elektronicznych - w aparatach cyfrowych wyraźny kolorowy szum fotograficzny, we wzmacniaczach audio szum dźwiękowy. W urządzeniach radiowych mogą wystąpić problemy z łącznością. Może spowodować spadek stabilności komputera w pobliżu, jeśli ten ma otwartą obudowę.
Obwód rezonansowy jest obwodem elektrycznym, składającym się z kondensatora i cewki. W obwodzie tym zachodzi rezonans prądów (w równoległym) lub napięć (w szeregowym). Rezonans następuje wtedy, gdy reaktancje cewki XL i kondensatora XC są sobie równe co do wartości bezwzględnej, (XL = -XC)[1].
Rysunek po prawej stronie pokazuje schemat obwodów rezonansowych: szeregowego i równoległego. Kondensator i cewka są biernymi elementami elektrycznymi, które charakteryzują się między innymi opornością zależną od częstotliwości i przesunięciem fazowym pomiędzy napięciem i prądem równym 90°, z tym, że dla cewki impedancja rośnie ze wzrostem częstotliwości, a dla kondensatora maleje, oraz przeciwnym znakiem przesunięcia fazy.
Gdy cewka i kondensator połączone są szeregowo i zasilane prądem przemiennym I, to w elementach tych występuje spadek napięcia - UC na kondensatorze, a UL na cewce. Ponieważ kierunki przesunięcia faz napięcia względem prądu są przeciwne, to napięcia te znoszą się wzajemnie. Dla pewnej określonej częstotliwości, gdy napięcie na cewce zrówna się z napięciem na kondensatorze to napięcia te zniosą się zupełnie - zachodzi dla tej częstotliwości rezonans napięć. Szeregowy obwód rezonansowy ma dla tej częstotliwości zerową oporność, gdyż dla każdej wartości natężenia prądu I' napięcie U jest równe 0 (napięcie na cewce i na kondensatorze są różne od zera i mogą osiągać bardzo duże wartości).
Dla obwodu rezonansowego równoległego zachodzi rezonans prądów. Gdy układ taki zasilany jest napięciem zmiennym U, to popłyną przez elementy prądy: IC przez kondensator, a IL przez cewkę. Ponieważ prądy te mają przeciwne fazy to znoszą się wzajemnie i sumaryczny prąd I jest mniejszy od sumy prądów IC i IL. Dla pewnej częstotliwości, gdy prąd cewki równa się prądowi kondensatora prądy te zniosą się zupełnie i prąd I będzie równy zeru - zachodzi rezonans prądów, a obwód rezonansowy przestaje pobierać prąd ze źródła - staje się przerwą w obwodzie, czyli ma nieskończenie dużą oporność (prądy w kondensatorze i cewce nie są jednak równe zeru i mogą osiągać duże wartości).
Obwody rezonansowe znajdują szerokie zastosowania w radiotechnice, dzięki faworyzowaniu jednej częstotliwości używane są jako filtry selektywne (środkowoprzepustowe) do wydzielania jednej, odbieranej częstotliwości spośród wszystkich dochodzących z anteny.
Modulacja - samorzutna lub celowa zmiana parametrów sygnału.
Przykładem może być modulowany dźwięk syreny alarmowej o zmiennej częstotliwości. Częstotliwość zmian wywołanych modulacją jest dużo mniejsza od częstotliwości fali.
Jeżeli modulowane są sygnały sinusoidalne, to proces ten może powodować zmiany amplitudy, częstotliwości lub fazy drgań. W przypadku fal prostokątnych (często stosowanych w technice cyfrowej) procesowi modulacji podlega szerokość, amplituda, pozycja (układ) oraz gęstość impulsów.
Kluczowanie (ang. keying) jest najstarszą techniką modulacji. Kiedy w XIX wieku zbudowano pierwsze elektryczne urządzenia do przekazywania informacji na odległość pojawił się problem kodowania znaków do postaci nadającej się do przesłania. Pierwszym pomysłem było użycie tylu przewodów ile jest liter w alfabecie. Pomysł ten okazał się niepraktyczny i dlatego Samuel Morse stworzył system kodowania znaków alfabetu w postaci serii krótkich (kropka) lub długich (kreska) impulsów. Urządzeniem kodującym był tutaj klucz mający postać przełącznika zwierającego obwód elektryczny. Operator wysyłał serię impulsów, którą odczytywał człowiek lub elektromagnes zapisywał na taśmie papieru. Kiedy technologia transmisji się rozwinęła powstał szereg technik kluczowania. Potem wszystkie te metody określono jednym terminem modulacja.
Najpopularniejsze techniki kluczowania:
ASK - (ang. Amplitude Shift Keying) kluczowanie amplitudy
QAM - (ang. Quadrature Amplitude Modulation)
FSK - częstotliwościowe (ang. Frequency-Shift Keying):
Modulacją w technice nazywa się celowy proces zmiany parametrów fali umożliwiający przesyłanie informacji (komunikację).
Modulacja jest konieczna, ponieważ sygnał musi nadawać się do transmisji przez sieć telekomunikacyjną. Zwykle medium transmisyjnym w takiej sieci są przewody miedziane, światłowody, powietrze i próżnia. Ograniczenia fizyczne powodują, że informacja może zostać przekłamana na skutek szumów, zniekształceń i przesłuchów pochodzących od innych sygnałów przesyłanych w tym samym ośrodku. Modulowany komunikat po pokonaniu tych wszystkich przeszkód musi być na tyle poprawny, aby odbiorca mógł wydzielić z niego użyteczne dane.
Urządzenie dokonujące modulacji to modulator.
Demodulacja to proces odwrotny do modulacji. Odbiornik nazywany demodulatorem uzyskuje sygnał, który dekoduje do wyjściowej postaci.
Jeżeli komunikacja ma charakter dwustronny, to jedno urządzenie dokonuje równocześnie modulacji nadawanych sygnałów i demodulacji tych, które odbiera (modulator-demodulator w skrócie modem).
Generator drgań (także: oscylator) – układ elektryczny, którego celem jest wytworzenie drgań elektrycznych. Składa się z dwóch podstawowych elementów: wzmacniacza i obwodu dodatniego sprzężenia zwrotnego podającego sygnał z wyjścia wzmacniacza z powrotem na jego wejście. O częstotliwości drgań decyduje obwód sprzężenia zwrotnego, o ich amplitudzie – parametry wzmacniacza.
Aby układ rozpoczął generację muszą zostać spełnione dwa warunki: amplitudy i fazy. Warunek amplitudy mówi o tym, że sygnał na wejściu wzmacniacza podawany z układu sprzężenia zwrotnego musi być na tyle duży, aby na wyjściu wzmacniacza otrzymać sygnał o takim samym lub większym poziomie. Oznacza to, że tłumienie układu sprzężenia zwrotnego nie może być większe niż wzmocnienie wzmacniacza. Warunek fazy oznacza, że chwila maksimum sygnału na wejściu wzmacniacza, po przejściu przez wzmacniacz i układ sprzężenie zwrotnego wypadało zawsze w tym samym momencie. Oznacza to, że przesunięcie fazy całego układu musi być równe wielokrotności 2π (360°).
Rodzaje generatorów podane na stronie http://www.pink.art.pl/radio/tubes/generator.html. W zależności od metod realizacji sprzężenia zwrotnego rozróżniamy dwa podstawowe rodzaje generatorów:
RC – z układem sprzężenia zwrotnego wykorzystującym rezystory i kondensatory (np. generator z mostkiem Wiena)
LC – z układem sprzężenia zwrotnego wykorzystującym obwód rezonansowy (np. generator Meissnera).
Generatory LC charakteryzuje większa stabilność częstotliwości w stosunku do generatorów RC. Najczęściej realizowane generatory LC to:
Generator kwarcowy jest szczególnym przypadkiem generatora LC, który w pętli sprzężenia zwrotnego ma rezonator kwarcowy. Charakteryzuje go znacznie większa stabilność częstotliwości w stosunku do generatorów LC i RC. W zależności od włączenia rezonatora
kwarcowego rozróżniamy następujące generatory kwarcowe:
Istnieją również generatory pracujące w wykorzystaniem innych metod – np. multiwibrator astabilny lub układy złożone z przerzutników wykorzystywane głównie w technice cyfrowej.
Monitor CRT [edytuj]
jest wciąż tańszy od LCD (różnica ta jest już nieznaczna)
obszar faktycznie wykorzystywany jest mniejszy od nominalnego, np. monitor 15" faktycznie ma ekran od ok. 13,8" do 14" (w zależności od producenta)
posiada mniejszą plamkę i bezwładność, dla monitorów CRT już w połowie lat 90. (1994-1996) wycofano z produkcji monitory z plamką powyżej 0.28 (przekątna plamki), z handlu takie monitory zniknęły kilka lat później
posiada lepsze odwzorowanie kolorów
są większe, obecnie monitory 14" już nie występują, a monitory 15" są już prawie całkowicie wycofane z rynku (pozostały tylko nieliczne z bardzo dobrymi parametrami, UVGA i XVGA z plamką poniżej 0,25 mm)
dominują monitory CRT 17" i 19"
rozdzielczość można ustawiać dynamicznie bez problemów związanych ze skalowaniem
monitory CRT są ciężkie, zajmują dużo miejsca, ale cały czas są niezastąpione dla profesjonalnych aplikacji CAD/CAM
obraz jest widoczny pod każdym kątem (nie ma efektu zanikania obrazu przy patrzeniu pod ostrym kątem z boku)
nie występuje charakterystyczny dla większości obecnych matryc LCD problem z wyświetlaniem koloru czarnego
przez wielu graczy nadal uważany jest za lepszy, zwłaszcza w grach typu FPP.
Monitor LCD [edytuj]
jest zdecydowanie mniejszy gabarytowo niż CRT
zużywa mniej prądu
jest wolny od efektu migotania
w pierwszych modelach ekranów LCD występuje tzw. efekt smużenia, co oznacza, że niepoprawnie wyświetlany jest szybko zmieniający się obraz (filmy, gry)
oferuje pracę w różnych rozdzielczościach – np. 800x600 czy 1280x1024 lecz przystosowany jest do jednej rozdzielczości. Jej zmiana możliwa jest tylko w dół i działa na zasadzie skalowania, co pogarsza jakość obrazu.
nie odkształca obrazu – obraz jest odwzorowywany na niemal płaskiej powierzchni
optycznie ma większą przekątną niż analogiczne monitory CRT (np. LCD 15" jest w przybliżeniu równy CRT 16,5"), ze względu na to, że nie ma tzw. martwego pola
generuje słabsze pole magnetyczne i według wielu użytkowników, jest mniej szkodliwy dla wzroku.
czas reakcji jest nieporównywalnie większy niż w monitorach CRT (istnieją monitory LCD o porównywalnym do CRT czasie reakcji, jednak są to modele z najwyższej półki, chociaż popularyzują się i tanieją bardzo szybko). Wysoki czas reakcji wiąże się ze smużeniem (opisanym w punkcie 2).
większość modeli LCD nie potrafi poprawnie odwzorować czerni na monitorze (jest to spowodowane koniecznością podświetlania powierzchni monitora od tyłu na całej powierzchni ekranu).
w małej części modeli LCD czasami pojawiają się martwe piksele, które odwracają uwagę od wyświetlanego obrazu - nie zawsze powracają do normy.
Organiczna dioda elektroluminescencyjna, OLED (ang. Organic Light-Emitting Diode) to dioda elektroluminescencyjna (LED) wytwarzana ze związków organicznych.
OLED oznacza także klasę wyświetlaczy graficznych, opartych na tej technologii. Wyświetlacze tego typu charakteryzują się dość prostą metodą produkcji – warstwa organiczna, składająca się z pikseli-diod w trzech kolorach (lub czterech - dodatkowy biały), jest nakładana na płytę bazową w procesie podobnym do drukowania stosowanego przez drukarki atramentowe. Dodatkowe wprowadzenie warstwy pośredniej pomiędzy płytą a emiterem podnosi sprawność i jasność ekranu.
OLED składa się z warstwy emisyjnej, warstwy przewodzącej, podłoża, oraz anody i katody. Warstwy złożone są z cząstek organicznych polimerów przewodzących. Ich poziom przewodzenia znajduje się w zakresie między izolatorami, a przewodnikami, z tego względu nazywane są one półprzewodnikami organicznymi.
Schemat OLED: 1 – katoda (−), 2 – warstwa emisyjna, 3 – emisja promieniowania, 4 – warstwa przewodząca, 5 – anoda (+)
Przyłożenie napięcia do OLED powoduje przepływ elektronów od katody do anody, zatem katoda podaje elektrony do warstwy emisyjnej, a anoda pobiera elektrony z warstwy przewodzącej, innymi słowy anoda podaje dziury elektronowe do warstwy emisyjnej.
W momencie spolaryzowania złącza w kierunku przewodzenia, warstwa emisyjna jest naładowana ujemnie, jednocześnie warstwa przewodząca staje się bogata w dodatnio naładowane dziury. Oddziaływanie elektrostatyczne przyciąga elektrony i dziury, które ze sobą rekombinują. Dzieje się to blisko warstwy emisyjnej, bowiem dziury w półprzewodnikach organicznych są bardziej mobilne niż elektrony (odwrotnie niż w przypadku półprzewodników nieorganicznych). W momencie rekombinacji elektron przechodzi na niższy poziom energetyczny, czemu towarzyszy emisja promieniowania elektromagnetycznego w zakresie widma widzialnego. Dlatego warstwa ta nazywana jest emisyjną.
OLED nie świeci przy zaporowym spolaryzowaniu złącza, ponieważ dziury elektronowe przemieszczają się do anody, a elektrony do katody, tak więc oddalają się od siebie i nie rekombinują.
Jako materiał anody zwykle wykorzystywany jest ITO (Indium Tin Oxide). Jest on przezroczysty dla światła i posiada wysoką pracę wyjścia co sprzyja przemieszczaniu dziur do warstwy polimerowej. Metale takie jak glin i wapń są często wykorzystywane do tworzenia katod, ponieważ posiadają niską pracę wyjścia sprzyjającą wstrzykiwaniu elektronów do warstwy polimerowej.
Zalety
Prototypowy elastyczny wyświetlacz OLED.
W procesie produkcji materiał organiczny może być naniesiony na odpowiednie elastyczne i lekkie podłoże, daje to możliwość produkcji zwijanych wyświetlaczy, ekranów wszytych w odzież, oraz lżejszych komputerów przenośnych.
Posiada większą skalę barw i jasność, niż LCD, ponieważ piksele OLED bezpośrednio emitują światło, które nie jest zatrzymywane przez filtry polaryzacyjne, tak jak jest w wypadku LCD.
Nie wymaga podświetlenia, dzięki temu kontrast może wynosić nawet 1 000 000:1, a czerń jest idealnie czarna. Zmniejsza to pobór energii w chwili wyświetlania ciemnego obrazu. Brak podświetlenia obniża też koszt produkcji oraz eksploatacji.
Kolor punktu obrazu na wyświetlaczu OLED pozostaje prawidłowy nawet gdy kąt patrzenia bliski jest 180 stopniom. Przy wykorzystaniu przezroczystego, elastycznego podłoża, wyświetlacz taki może wyświetlać obraz z obu stron, a tym samym kąt widzenia jest praktycznie nieograniczony.
Posiada znacznie krótszy czas reakcji w porównaniu do monitora LCD, który cechuje się czasem reakcji na poziomie 2-12 milisekund, natomiast OLED nawet około 0,01 milisekundy.
W procesie produkcji OLED nie jest wykorzystywana rtęć, co czyni je bardziej przyjaznymi dla środowiska.
Dzięki prostej budowie, braku podświetlenia oraz mniejszej liczbie warstw wyświetlacza, szacunkowe koszty masowej produkcji są znacznie niższe niż produkcja wyświetlaczy LCD oraz paneli plazmowych. Także mniejsze zużycie energii i mniejsza liczba elementów ma wpływ na niższy koszt eksploatacji wyświetlaczy OLED.
Wady
Największym problemem technologii OLED jest ograniczona żywotność materiałów organicznych. W przeszłości niebieskie OLED miały czas życia ograniczony do 5000 godzin, dla porównania LCD około 60 000 godzin. Jednak w 2007 roku wyprodukowano wyświetlacze PLED mogące działać ponad 198 000 godzin w oparciu o zielone OLED.
W przypadku rozszczelnienia matrycy wyświetlacza, spowodowanego mechanicznym uszkodzeniem, wilgoć może zniszczyć materiał organiczny.
Rozwój technologii jest ograniczony patentami posiadanymi przez Eastman Kodak, żądającego nabycia licencji przez inne firmy. W przeszłości, wiele technologii wyświetlaczy stawało się szeroko rozpowszechnionych dopiero po wygaśnięciu patentów, klasycznym przykładem jest maska szczelinowa CRT
DLP (Digital Light Processing) – klasa wyświetlaczy obrazowych opracowanych przez Texas Instruments, opartych o technologię MEMS wykorzystującą miniaturowe lustra (powierzchnia kilkunastu mikrometrów kwadratowych) odbijających lub rozpraszających padający na nie strumień świetlny. Zaletą jest wysoki kontrast – 2000:1. Ze względu na wysoką cenę – zastosowania profesjonalne (np. wysokiej klasy projektory cyfrowe, także kinowe).