11 M3 BartkowiakM BorkowskiR zad11 doc

Zadanie 11

Dla ramy przedstawionej na rysunku wyznaczyć za pomocą twierdzenia Castigliano przemieszczenie węzła A oraz obrót węzła B.

W punkcie A przykładamy siłę fikcyjną Pf o wartości Pf = 0, a w punkcie B moment fikcyjny Mf = 0 ∖ n

Z warunków równowagi określamy wartości reakcji podpór


$$\sum_{}^{}{F_{x} = 0\ \ \ \ \ \ \ R_{\text{Dx}} - R_{A} = 0}$$

RDx = RA


$$\sum_{}^{}{F_{Y} = 0\ \ \ {- R}_{\text{Dy}} - qa - P_{f} = 0}$$

RDy= − qa − Pf


$$\sum_{}^{}{M_{D} = 0\ \ \ \ \ \ \ {- qa*\frac{1}{2}a + M}_{f} + R_{A}a - P_{f}(a + 2a\operatorname{tg}\alpha) = 0}$$

${R_{A}a = \frac{1}{2}qa^{2} - M}_{f} + P_{f}a(1 + 2\operatorname{tg}\alpha)$

$R_{A} = \frac{1}{2}qa - \frac{M_{f}}{a} + P_{f}(1 + 2\operatorname{tg}\alpha)$

$R_{\text{Dx}} = \frac{1}{2}qa - \frac{M_{f}}{a} + P_{f}(1 + 2\operatorname{tg}\alpha)$

Funkcje momentów zginających i ich pochodne cząstkowe w poszczególnych przedziałach


0x1a


$$M(x_{1}) = R_{\text{Dx}}{*x}_{1} = \lbrack\frac{1}{2}qa - \frac{M_{f}}{a} + P_{f}(1 + 2\operatorname{tg}\alpha)\rbrack{*x}_{1}$$


$$\frac{\partial M(x_{1})}{\partial P_{f}} = (1 + 2\operatorname{tg}\alpha){*x}_{1}\text{\ \ \ \ \ \ \ \ }\frac{\partial M(x_{1})}{\partial M_{f}} = - \frac{x_{1}}{a}$$


0x2a


$$M(x_{2}) = \ R_{\text{Dx}}*a - R_{\text{Dy}}*x_{2} - qx_{2}*\frac{1}{2}x_{2} = \lbrack\frac{1}{2}qa - \frac{M_{f}}{a} + P_{f}(1 + 2\operatorname{tg}\alpha)\rbrack*a + (qa + P_{f})*x_{2} - \frac{1}{2}gx_{2}^{2} = {\frac{1}{2}qa^{2} - M}_{f} + P_{f}a(1 + 2\operatorname{tg}\alpha) + (qa + P_{f})*x_{2} - \frac{1}{2}gx_{2}^{2}$$


$$\frac{\partial M(x_{2})}{\partial P_{f}} = (1 + 2\operatorname{tg}\alpha)*a + x_{2}\text{\ \ \ \ \ }\frac{\partial M(x_{2})}{\partial M_{f}} = - 1$$


$$\mathbf{0 \leq}\mathbf{x}_{\mathbf{3}}\mathbf{\leq}\frac{\mathbf{2}\mathbf{a}}{\cos\mathbf{\alpha}}$$


$$M(x_{3}) = R_{A}\cos\alpha*x_{3} - P_{f}\sin\alpha*x_{3} = \lbrack\frac{1}{2}qa - \frac{M_{f}}{a} + P_{f}(1 + 2\operatorname{tg}\alpha)\rbrack\operatorname{*cos}\alpha x_{3} - P_{f}\sin\alpha*x_{3}$$


$$\frac{\partial M(x_{3})}{\partial P_{f}} = (1 + 2\operatorname{tg}\alpha)\operatorname{*cos}\alpha x_{3} - \sin\alpha x_{3}$$


$$\frac{\partial M(x_{3})}{\partial M_{f}} = - \frac{\cos\alpha}{a}x_{3}$$

Kąt obrotu w węzła B


$$Q_{B} = \frac{\partial V}{\partial M_{f}} = \frac{1}{\text{EI}}\left\lbrack \int_{0}^{a}{(\frac{1}{2}}\text{qa}x_{1})*( - \frac{x_{1}}{a})dx_{1} + \int_{0}^{a}{(\frac{1}{2}}qa^{2} + qax_{2} - \frac{1}{2}qx_{2}^{2})*( - 1)dx_{2} + \int_{0}^{\frac{2a}{\cos\alpha}}{(\frac{1}{2}}\text{qa}\cos\alpha*x_{3})*( - \frac{\cos\alpha}{a}x_{3})dx_{3} \right\rbrack = = \frac{1}{\text{EI}}\left\lbrack \int_{0}^{a}{( - \frac{1}{2}}qx_{1}^{2})dx_{1} + \int_{0}^{a}{( - \frac{1}{2}}qa^{2} - qax_{2} + \frac{1}{2}qx_{2}^{2})dx_{2} + \int_{0}^{\frac{2a}{\cos\alpha}}{( - \frac{1}{2}}q{\cos\alpha}^{2}x_{3}^{2})dx_{3} \right\rbrack = = \frac{1}{\text{EI}}\left\lbrack \left( - \frac{1}{2}g\frac{x_{1}^{3}}{3} \right)\left| \frac{a}{0} + \left( - \frac{1}{2}qa^{2}x_{2} \right)\left| \frac{a}{0} + \left( - qa\frac{x_{2}^{2}}{2} \right)\left| \frac{a}{0} + \left( \frac{1}{2}q\frac{x_{2}^{3}}{3} \right)\left| \frac{a}{0}\ ( - \frac{1}{2}q\cos{\alpha^{2}\frac{x_{3}^{3}}{3})\left| \frac{\frac{2a}{\cos\alpha}}{0} \right.\ } \right.\ \right.\ \right.\ \right.\ \right\rbrack = = \frac{1}{\text{EI}}\left( - \frac{qa^{3}}{6} - \frac{qa^{3}}{2} - \frac{qa^{3}}{2} + \frac{qa^{3}}{6} - \frac{q\cos\alpha^{2}{*8a}^{3}}{6\cos\alpha^{3}} \right) = \ \frac{1}{\text{EI}}\left( - qa^{3} - \frac{4qa^{3}}{3\cos\alpha} \right) = = - \frac{qa^{3}}{\text{EI}}\left( 1 + \frac{4}{3\cos\alpha} \right)$$

Przemieszczenie pionowe węzła A

$U_{A}^{\text{pion}} = \frac{\partial V}{\partial P_{f}} = \frac{1}{\text{EI}}\left\lbrack \int_{0}^{a}{(\frac{1}{2}\text{qa}x_{1})(1 + 2\operatorname{tg}\alpha)*x_{1}dx_{1} + \int_{0}^{a}{(\frac{1}{2}}qa^{2} + qax_{2} - \frac{1}{2}qx_{2}^{2})(a(1 + 2\operatorname{tg}\alpha) + x_{2})dx_{2} + \int_{0}^{\frac{2a}{\cos\alpha}}{(\frac{1}{2}}\text{qa}x_{3}cos\alpha)((1 + 2\operatorname{tg}\alpha)\cos\alpha*x_{3} - sin\alpha*x_{3})dx_{3}} \right\rbrack = \frac{1}{\text{EI}}\left\lbrack \int_{0}^{a}{\frac{1}{2}qa(1 + 2\operatorname{tg}\alpha)x_{1}^{2}}dx_{1} + \int_{0}^{a}{(\frac{1}{2}}qa^{3}(1 + 2\operatorname{tg}\alpha) + qa^{2}(1 + 2\operatorname{tg}\alpha)x_{2} - \frac{1}{2}qa(1 + 2\operatorname{tg}\alpha)*x_{2}^{2}) + \frac{1}{2}qa^{2}x_{2} + qax_{2}^{2} - \frac{1}{2}qx_{2}^{3})dx_{2} + \int_{0}^{\frac{2a}{\cos\alpha}}{(\frac{1}{2}}qa(1 + 2\operatorname{tg}\alpha)\operatorname{}{\cos^{2}\alpha}x_{3}^{2} - \frac{1}{2}\text{qasinαcosα}x_{3}^{2})dx_{3} \right\rbrack = = \frac{1}{\text{EI}}\left\lbrack \left( \frac{1}{2}\text{qa}\left( 1 + 2\operatorname{tg}\alpha \right)\frac{x_{1}^{3}}{3} \right)\left| \frac{a}{0} \right.\ + \left( \frac{1}{2}qa^{3}\left( 1 + 2\operatorname{tg}\alpha \right)x_{2} \right)\left| \frac{a}{0} \right.\ + \left( qa^{2}\left( 1 + 2\operatorname{tg}\alpha \right)\frac{x_{2}^{2}}{2} \right)\left| \frac{a}{0} + \right.\ \left( - \frac{1}{2}\text{qa}\left( 1 + 2\operatorname{tg}\alpha \right)\frac{x_{2}^{3}}{3} \right)\left| \frac{a}{0} \right.\ + \left( \frac{1}{2}qa^{2}\frac{x_{2}^{2}}{2} \right)\left| \frac{a}{0} \right.\ + \left( \text{qa}\frac{x_{2}^{3}}{3} \right)\left| \frac{a}{0} \right.\ + \left( - \frac{1}{2}q\frac{x_{2}^{4}}{4} \right)\left| \frac{a}{0} \right.\ + \left( \frac{1}{2}\text{qa}\cos^{2}\alpha\left( 1 + 2\operatorname{tg}\alpha \right)\frac{x_{3}^{3}}{3} \right)\left| \frac{\frac{2a}{\cos\alpha}}{0} \right.\ + ( - \frac{1}{2}\text{qasinαcosα}\frac{x_{3}^{3}}{3})\left| \frac{\frac{2a}{\cos\alpha}}{0} \right.\ \right\rbrack = \frac{1}{\text{EI}}\left\lbrack \frac{(1 + 2\operatorname{tg}\alpha)qa^{4}}{6} + \frac{(1 + 2\operatorname{tg}\alpha)qa^{4}}{2} + \frac{(1 + 2\operatorname{tg}\alpha)qa^{4}}{2} - \frac{(1 + 2\operatorname{tg}\alpha)qa^{4}}{6} + \frac{qa^{4}}{4} + \frac{qa^{4}}{3} - \frac{qa^{4}}{8} + \frac{\text{qa}\cos^{2}\alpha(1 + 2tg\alpha)\frac{{8a}^{3}}{\cos^{3}\alpha}}{6} - \frac{\text{qasinαcosα}\frac{{8a}^{3}}{\cos^{3}\alpha}}{6} \right\rbrack = \frac{\text{qa}^{4}}{\text{EI}}$($\frac{35}{24} + 2tg\ \alpha + \frac{4cos\alpha\left( 1 + 2tg\alpha \right) - 4sin\alpha}{{3cos}^{2}\alpha}$


Wyszukiwarka

Podobne podstrony:
11 M1 SiwońM PacynaK ZAD11
11 M2 KrzywdzińskaP ZelewiczS ZAD11 2
11 M1 SiwońM PacynaK ZAD11
11 POSPIESZNY POCIĄG KRAWCZYK 52 doc
M3 doc
new doc (11)
11 LABFZ.DOC, Sprawozdanie
egzamin 11 doc
11 PEiM Układy logiczne doc (2)
(1995) WIEDZA KTÓRA PROWADZI DO ŻYCIA WIECZNEGO (DOC), rozdział 11, Rozdział 1
instrukcja do ćwiczeń nr 11 doc
11.DOC, POLITECHNIKA
małe kardio giełda gr 4 11 2014 r doc
11 wer1 doc
METR T~11 DOC

więcej podobnych podstron