General characteristics of the building
Building length 32 m
Building width 21,6 m
Building height H=1,5m+28x3m=85,5m
Localization: Szczecin (50 m.a.s.l.)
Category of terrain: Exposed to the open sea (0 category)
Moment of inertia
$$\sum_{\mathbf{i}}^{\mathbf{n}}{\mathbf{I}_{\mathbf{i}}\mathbf{=}\mathbf{I}_{\mathbf{1}}\mathbf{+}\mathbf{I}_{\mathbf{2}}\mathbf{+ .. +}\mathbf{I}_{\mathbf{n}}}$$
I1=I7
nr | h | b | Iy | x2 | P | z | Iy | x2 |
---|---|---|---|---|---|---|---|---|
[cm] | [cm] | [cm4] | [cm4] | [cm2] | [cm] | [cm4] | [cm4] | |
1 | 58 | 20 | 325187 | 650373 | 1160 | 877 | 892189640 | 1784379280 |
2 | 70 | 20 | 571667 | 1143333 | 1400 | 628 | 552137600 | 1104275200 |
3 | 181 | 20 | 9882902 | 3600 | 317 | 361760400 | 723520800 | |
4 | 20 | 290 | 193333 | 386667 | 5800 | 360 | 751680000 | |
5 | 110 | 20 | 2218333 | 2200 | 353 | 274139800 | ||
6 | 185 | 20 | 10552708 | 3700 | 0 | 0 | ||
Sum | 22653943 | 2180373 | 1025819800 | 3612175280 | ||||
Sum of I1 | 4662829397 |
I2=I6
nr | h | b | Iy | x2 | P | z | Iy | x2 |
---|---|---|---|---|---|---|---|---|
[cm] | [cm] | [cm^4] | [cm^4] | [cm^2] | [cm] | [cm^4] | [cm^4] | |
1 | 278 | 20 | 35808253 | 71616507 | 5560 | 767 | 3270886840 | 6541773680 |
2 | 63 | 20 | 416745 | 833490 | 1260 | 507 | 323881740 | 647763480 |
3 | 20 | 333 | 222000 | 6660 | 360 | 863136000 | ||
4 | 15 | 20 | 5625 | 300 | 378 | 42865200 | ||
5 | 567 | 20 | 303807105 | 11340 | 67 | 50905260 | ||
6 | 20 | 290 | 193333 | 1360 | 351 | 167553360 | ||
7 | 20 | 23 | 15333 | 460 | 360 | 59616000 | ||
8 | 68 | 20 | 524053 | 5800 | 360 | 751680000 | ||
Sum | 304767450 | 72449997 | 1935755820 | 7189537160 | ||||
Sum | 9502510427 |
I3=I5
nr | h | b | Iy | x2 | P | z | Iy | x2 |
---|---|---|---|---|---|---|---|---|
[cm] | [cm] | [cm^4] | [cm^4] | [cm^2] | [cm] | [cm^4] | [cm^4] | |
1 | 356 | 20 | 75196693 | 150393387 | 10700 | 638 | 4355370800 | 8710741600 |
2 | 20 | 600 | 400000 | 800000 | 12000 | 360 | 1555200000 | 3110400000 |
3 | 374 | 20 | 87189373 | 7480 | 0 | 0 | ||
Sum | 87189373 | 151193387 | 0 | 11821141600 | ||||
Sum | 12059524360 |
I4
nr | h | b | Iy | x2 | P | z | Iy | x2 |
---|---|---|---|---|---|---|---|---|
[cm] | [cm] | [cm^4] | [cm^4] | [cm^2] | [cm] | [cm^4] | [cm^4] | |
1 | 594 | 20 | 349307640 | 698615280 | 12000 | 607 | 4421388000 | 8842776000 |
2 | 414 | 600 | 3547897200 | 8280 | 0 | 0 | 0 | |
Sum | 3547897200 | 698615280 | 0 | 8842776000 | ||||
Sum | 13089288480 |
I=65539016847 cm4=655,39016847m4
Wind action
The base wind speed:
It was assumed that the relevant building is located in the I zone of the wind load.
(Szczecin A=50 m.a.s.l.) A≤300 m.a.s.l.
Value of the primary base wind speed: vb,0= 22 m/s
Assumed direction coefficient of the wind: cdir=1,0
Season coefficient: cseason=1,0
Base wind speed:
vb = vb, 0 * Cdir * Cseason = 22 m/s * 1, 0 * 1, 0 = 22 m/s
Pressure wind speed: qd=0,30
Wind blowing on the long side of the building
h=85,5 m
b=36,5 m
d=18,36 m
Exposure coefficient:
$$c_{e}\left( z \right) = 3,0*\left( \frac{z}{10} \right)^{0,17}$$
$$c_{e}\left( z \right) = 3,0*\left( \frac{36,5}{10} \right)^{0,17} = 3,73$$
Value of exposure coefficient due to height
III category of terrain | Height | Ce(z) |
---|---|---|
[m] | [-] | |
36,5 | 3,738618 | |
39,6 | 3,790787 | |
42,7 | 3,839671 | |
45,8 | 3,885692 | |
48,9 | 3,929197 | |
85,5 | 4,320714 |
qp(z) = qb * ce(z)
$${\rho = 1,25\frac{\text{kg}}{m^{3}}\text{\ \ \ air\ density}\backslash n}{q_{p}\left( 36,5 \right) = 3,74*0,3 = 1,12}$$
0 category of terrain | Height | Exposure coefficient | Pressure wind speed | Peak value of pressure wind speed [qp] |
---|---|---|---|---|
[m] | ce(z) |
qb, 0 |
$$\left\lbrack \frac{\text{kN}}{m^{2}} \right\rbrack$$ |
|
36,5 | 3,74 | 0,3 | 1,12 | |
40 | 3,8 | 0,3 | 1,14 | |
45 | 3,87 | 0,3 | 1,16 | |
50 | 3,94 | 0,3 | 1,18 | |
55 | 4,01 | 0,3 | 1,20 | |
60 | 4,07 | 0,3 | 1,22 | |
85,5 | 4,32 | 0,3 | 1,30 |
Peak value of pressure wind speed
Wind pressure acting on the outer surfaces of the structure, expressed by the formula:
we = qp(h) * cpe, 10
∖n
The values of the external pressure coefficients for vertical walls of buildings in a rectangular plan:
$$\frac{h}{d} = \frac{85,5}{18,36} = 4,65$$
cpe, 10, D = +0, 8
cpe, 10, E = −0, 6825
$$w_{e,D} = 1,12*0,8 = 0,896\frac{\text{kN}}{m^{2}}$$
$$w_{e,E} = 1,12*\left( - 0,6825 \right) = - 0,7654819\frac{\text{kN}}{m^{2}}$$
Height | Exposure coefficient | Pressure wind speed | Peak value of pressure wind speed | External preassure for vertical walls | Preassure on the surface | External preassure for vertical walls | Preassure on the surface | Summation |
---|---|---|---|---|---|---|---|---|
[m] | ![]() |
![]() |
![]() |
„D” area | ![]() |
„E” area | ![]() |
![]() |
36,5 | 3,738618 | 0,3 | 1,1215853 | 0,8 | 0,897268 | -0,6825 | -0,7654819 | 1,66275016 |
39,6 | 3,790787 | 0,3 | 1,1372362 | 0,8 | 0,909789 | -0,6825 | -0,7761637 | 1,68595273 |
42,7 | 3,839671 | 0,3 | 1,1519012 | 0,8 | 0,921521 | -0,6825 | -0,7861726 | 1,7076936 |
45,8 | 3,885692 | 0,3 | 1,1657076 | 0,8 | 0,932566 | -0,6825 | -0,7955955 | 1,72816157 |
48,9 | 3,929197 | 0,3 | 1,178759 | 0,8 | 0,943007 | -0,6825 | -0,804503 | 1,74751019 |
85,5 | 4,320714 | 0,3 | 1,2962141 | 0,8 | 1,036971 | -0,6825 | -0,8846661 | 1,92163744 |
Summation of the wind preassure
Changing the load to evenly distributed:
$$\frac{146,7531\ }{h} = \frac{146,7531\ }{85,5} = \mathbf{1,716\ }\frac{\mathbf{\text{kN}}}{\mathbf{m}^{\mathbf{2}}}$$
Characteristic and design values
Longer side:
$$W_{e}^{*} = 1,716\frac{\text{kN}}{m^{2}}$$
$$\mathbf{W}_{\mathbf{e}}\mathbf{=}\mathbf{W}_{\mathbf{e}}^{\mathbf{*}}\mathbf{\bullet}\mathbf{\gamma}_{\mathbf{f}}\mathbf{=}\mathbf{1}\mathbf{,}\mathbf{716}\mathbf{\bullet}\mathbf{1}\mathbf{,}\mathbf{5}\mathbf{=}\mathbf{2}\mathbf{,}\mathbf{574}\frac{\mathbf{\text{kN}}}{\mathbf{m}^{\mathbf{2}}}$$
We use two ways of calculating value of q:
-way of bending moment
-way of area of influences
Then we will use bigger value in further calculations.
Calculation the bending moment:
Bending moment of each section, width each section is 1m:
$$M_{1} = 1,609\frac{\text{kN}}{m^{2}}*36,5\ m*16,25\ m*1\ m = 1071,80\ kNm$$
M2 = 1, 686 * 3, 1 * 38, 3 * 1 = 200, 18 kNm
M3 = 1, 707 * 3, 1 * 41, 4 * 1 = 219, 08 kNm
M4 = 1, 728 * 3, 1 * 44, 5 * 1 = 238, 37 kNm
M5 = 1, 748 * 3, 1 * 47, 6 * 1 = 257, 94 kNm
M6 = 1, 921 * 36, 5 * 67, 2 * 1 = 4711, 83 kNm
$$\sum_{}^{}M_{i} = 6699,2\ kNm$$
$$M = \frac{qh^{2}}{2} \rightarrow q = \frac{2M}{h^{2}} = \frac{2*6699,2}{{85,5}^{2}} = 1,83\frac{\text{kN}}{m^{2}}$$
∖n
Calculation the area of influences:
Rectangular area of each section:
$$A_{1} = 1,669\frac{\text{kN}}{m^{2}}*36,5m = 60,92\frac{\text{kN}}{m}$$
$$A_{2} = 1,686\frac{\text{kN}}{m^{2}}*3,1\ m = 5,23\frac{\text{kN}}{m}$$
$$A_{3} = 1,707\frac{\text{kN}}{m^{2}}*3,1\ \ m = 5,29\frac{\text{kN}}{m}$$
$$A_{4} = 1,728\frac{\text{kN}}{m^{2}}*3,1\ \ m = 5,36\frac{\text{kN}}{m}$$
$$A_{5} = 1,748\frac{\text{kN}}{m^{2}}*3,1\ m = 5,42\frac{\text{kN}}{m}$$
$$A_{6} = 1,9,21\frac{\text{kN}}{m^{2}}*36,5\ m = 70,12\frac{\text{kN}}{m}$$
$$\sum_{}^{}A_{i} = 152,34\frac{\text{kN}}{m}$$
$$q = \frac{\sum_{}^{}A_{i}}{H} = \frac{152,34\frac{\text{kN}}{m}}{85,5m} = 1,78\frac{\text{kN}}{m^{2}}$$
The bigger value of q is from the first method ($1,83\frac{\text{kN}}{m^{2}}$) so we will use this for further calculations.
Calculations of internal forces:
We consider wall 3 (axis 3) in our calculations.
Areas:
F3A = F3C = 5, 36 • 0, 20 + 6, 00 • 0, 2 = 2, 272m2
F3B = 3, 74 • 0, 20 = 0, 478m2
Moments of inertia:
$$I_{3B} = \frac{{3,74}^{3}*0,20}{12} = 0,872\text{\ m}^{4}$$
$$I_{3A} = I_{3C} = \frac{{5,36}^{3}*0,20}{12} + 0,20*5,36*{1,52}^{2} + {1,26}^{2}*6*0,2 + \frac{{0,2}^{3}*6}{12} = 6,9523\ m^{4}$$
There is two lines of openings, symmetrical:
$$\alpha = \sqrt{\left( \frac{2l^{2}}{\sum_{}^{}I_{i}} + \frac{1}{F_{1}} \right)*\frac{12I_{p}}{h*b^{3}}}$$
$\sum_{}^{}I_{i} = 6,9523*2 + 0,872 = 14,7766\ m^{4}$ - total moment of inertia, sum for own central of gravity
F1 = F3A = 2, 272m2 – area of cross-section no 1
l = 1, 36 + 1, 63 + 1, 87 = 4, 86m
h = 3,00 m – storey height
b = 1,63 m – width of opening
Ip – moment of inertia of header
$$I_{p} = \frac{d*h_{p}^{3}}{12*\left\lbrack 1 + 2,8{*\left( \frac{h_{p}}{b} \right)}^{2} \right\rbrack} = \frac{0,20*{0,8}^{3}}{12*\left\lbrack 1 + 2,8*\left( \frac{0,80}{1,63} \right)^{2} \right\rbrack} = 0,005096\ m^{4}$$
d = 0,20 m – thickness of wall
hp = 0,80 m – height of header
$$\alpha = \sqrt{\left( \frac{2{*4,86}^{2}}{14,7766} + \frac{1}{2,272} \right)*\frac{12*0,005096}{3,00*{1,63}^{3}}} = 0,1308$$
We use the Rossman approach:
α * H = 0, 1308 * 85, 5 = 11, 18 m
Individual values for different strips:
xi = ξ * H ξ − − thickness of slide η, η’ = f(α * H ; ξ)
x0 = 0, 0 * H = 0, 0 * 85, 5 m = 0, 00 m ηo = 0, 000 and η0′ = 0, 091
x1 = 0, 1 * H = 0, 1 * 85, 5 m = 8, 55 m η1 = 0, 021 and η1′ = 0, 130
x2 = 0, 2 * 85, 5 m = 17, 10 m η2 = 0, 055 and η2′ = 0, 216
x3 = 0, 3 * 85, 5 m = 25, 65 m η3 = 0, 106 and η3′ = 0, 303
x4 = 0, 4 * 85, 5 m = 34, 2 m η4 = 0, 176 and η4′ = 0, 400
x5 = 0, 5 * 85, 5 m = 42, 75 m η5 = 0, 266 and η5′ = 0, 496
x6 = 0, 6 * 85, 5 m = 51, 3 m η6 = 0, 374 and η6′ = 0, 588
x7 = 0, 7 * 85, 5 m = 59, 85 m η7 = 0, 500 and η7′ = 0, 663
x8 = 0, 8 * 85, 5 m = 68, 4 m η8 = 0, 636 and η8′ = 0, 680
x9 = 0, 9 * 85, 5 m = 76, 95 m η9 = 0, 766 and η9′ = 0, 567
x10 = 1, 0 * 85, 5 m = 85, 5 m η10 = 0, 835 and η10′ = 0, 000
Data for the calculations of internal forces:
$$w_{c} = q*L*\frac{I}{\sum_{}^{}I} = 1,83*36,5*\frac{120,59}{655,39} = 12,29\ kN/m$$
wo = wc * 1, 5 = 12, 29 * 1, 5 = 18, 435 kN/m
$$\psi = \frac{l}{\sum_{}^{}I_{i}}*\frac{12{*I}_{p}}{h_{k}*b^{3}} = \frac{4,86}{14,7766}*\frac{12*0,005096}{3,00*{1,63}^{3}} = 0,00155$$
$$M_{H}^{o} = \frac{w_{o}*H^{2}}{2} = \frac{18,435\ *{85,50}^{2}}{2} = 67382,23\text{\ kNm}$$
THo = ωo * H = 18, 435 * 85, 50 = 1576, 19 kN
Shearing forces:
$$T = \eta*\frac{\psi}{\alpha^{2}}*M_{H}^{o} = 0,021*\frac{0,00155}{{0,1308}^{2}}*67382,23 = 127,96\text{\ kN}$$
$$T^{'} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{H}^{o} = 0,13*\frac{0,00155}{{0,1308}^{2}}*1576,19 = 18,53\text{\ kN}$$
$$Q = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{H}^{o}*h = 0,13*\frac{0,00155}{{0,1308}^{2}}*1576,19*3,00 = 55,59\text{\ kN}$$
Mxo = MHo * ξ2 = 67382, 23 * 0, 12 = 673, 8223 kNm
Mx = Mxo − T * 2l = 673, 82 − 127, 96 * 2 * 4, 86 = −569, 96 kNm
Tabulated results:
ξ | η | η' | T (kN) | T' (kN) | Q (kN) | Mxo (kNm) | Mx (Knm) |
---|---|---|---|---|---|---|---|
0 | 0,000 | 0,091 | 0,00 | 12,97 | 38,91 | 0,00 | 0,00 |
0,1 | 0,021 | 0,130 | 127,96 | 18,53 | 55,59 | 673,82 | -569,96 |
0,2 | 0,055 | 0,216 | 335,14 | 30,79 | 92,36 | 2695,29 | -562,24 |
0,3 | 0,106 | 0,303 | 645,90 | 43,19 | 129,56 | 6064,40 | -213,75 |
0,4 | 0,176 | 0,400 | 1072,44 | 57,01 | 171,04 | 10781,16 | 357,05 |
0,5 | 0,266 | 0,496 | 1620,85 | 70,70 | 212,09 | 16845,56 | 1090,94 |
0,6 | 0,374 | 0,588 | 2278,93 | 83,81 | 251,43 | 24257,60 | 2106,38 |
0,7 | 0,500 | 0,663 | 3046,70 | 94,50 | 283,50 | 33017,29 | 3403,36 |
0,8 | 0,636 | 0,680 | 3875,40 | 96,92 | 290,77 | 43124,63 | 5455,70 |
0,9 | 0,766 | 0,567 | 4667,55 | 80,82 | 242,45 | 54579,61 | 9211,06 |
1 | 0,835 | 0,000 | 5087,99 | 0,00 | 0,00 | 67382,23 | 17926,96 |
Calculating the stresses for 1,0 m area:
$$M_{1} = M_{x}*\frac{I_{1}}{\sum_{}^{}I_{i}} = 17926,96*\frac{6,952}{14,7766} = 8434,52\text{\ kNm}$$
$$\sigma_{1} = \frac{M_{1}*a}{2*I_{1}} = \frac{8434,52*5,56}{2*6,952} = 3372,69\ kN/m^{2}$$
$$\sigma_{2} = \sigma_{1}*\frac{\left( \frac{a}{2} - 1,0 \right)}{\frac{a}{2}} = 3073,31*\frac{\left( \frac{5,56}{2} - 1,0 \right)}{\frac{5,56}{2}} = 2159,49\ kN/m^{2}$$
Final total perpendicular force:
N = N1 + N2
$$N_{1} = \frac{T}{a} = \frac{5087,99}{5,56}*1mb = 1003,55\text{\ kN}$$
$$N_{2} = \frac{\sigma_{1} + \sigma_{2}}{2}*d*1mb = \frac{3372,69 + 2159,49}{2}*0,2*1,0 = 553,22\text{\ kN}$$
N = 553, 22 kN + 1003, 55 kN = 1556, 77 kN
Tabulated results:
ξ | M1 (kNm) | σ1 (kN/m2) | σ2 (kN/m2) | N2 (kN) | N1 (kN) | N (kN) |
---|---|---|---|---|---|---|
0 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
0,1 | -268,16 | -107,23 | -68,66 | -17,59 | 25,24 | 7,65 |
0,2 | -264,53 | -105,78 | -67,73 | -17,35 | 66,10 | 48,75 |
0,3 | -100,57 | -40,21 | -25,75 | -6,60 | 127,40 | 120,80 |
0,4 | 167,99 | 67,17 | 43,01 | 11,02 | 211,53 | 222,54 |
0,5 | 513,28 | 205,24 | 131,42 | 33,67 | 319,69 | 353,36 |
0,6 | 991,04 | 396,28 | 253,74 | 65,00 | 449,49 | 514,50 |
0,7 | 1601,26 | 640,29 | 409,97 | 105,03 | 600,93 | 705,95 |
0,8 | 2566,87 | 1026,41 | 657,20 | 168,36 | 764,38 | 932,74 |
0,9 | 4333,75 | 1732,92 | 1109,57 | 284,25 | 920,62 | 1204,87 |
1 | 8434,52 | 3372,69 | 2159,49 | 553,22 | 1003,55 | 1556,77 |
Deflection:
f = fultimate ≥ fs + ff
Additional 0,5 m for foundation in each direction.
B + 0,5 m + 0,5 m = 18,36 + 1 = 19,36 m
L + 0,5 m +0,5 m = 36,5 + 1 = 37,5 m
w = q * L = 1, 83 * 36, 5 = 66, 795 kN/m
$$W = w*H = 66,795\ \frac{\text{kN}}{m}*85,5\ m = 5710,97\ kN$$
$$z = \frac{H}{2} + H_{f} = \frac{85,5}{2} + 13,4 = 56,15\ m$$
$$I_{f} = \frac{bh^{3}}{12} = \frac{\left( L + 1 \right)\left( B + 1 \right)^{3}}{12} = \frac{37,5*{19,36}^{3}}{12} = 22675,9808\ m^{4}$$
Calculations Mx for characteristic values:
$$w_{c} = q*L*\frac{I}{\sum_{}^{}I} = 1,83*36,5*\frac{120,59}{655,39} = 12,29\ kN/m$$
$$\psi = \frac{l}{\sum_{}^{}I_{i}}*\frac{12{*I}_{p}}{h_{k}*b^{3}} = \frac{4,86}{14,7766}*\frac{12*0,005096}{3,00*{1,63}^{3}} = 0,00155$$
$$M_{\text{Hc}}^{o} = \frac{w_{c}*H^{2}}{2} = \frac{12,29*{85,50}^{2}}{2} = 44921,4863\text{\ kNm}$$
THco = ωc * H = 12, 29 * 85, 50 = 1050, 795 kN
Shearing forces:
$$T_{c} = \eta*\frac{\psi}{\alpha^{2}}*M_{\text{Hc}}^{o} = 0,021*\frac{0,00155}{{0,1308}^{2}}*44921,4863 = 85,31\text{\ kN}$$
$$T_{c}^{'} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{\text{Hc}}^{o} = 0,130*\frac{0,00155}{{0,1308}^{2}}*1050,795 = 12,35\text{\ kN}$$
$$Q_{c} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{\text{Hc}}^{o}*h = 0,130*\frac{0,00155}{{0,1308}^{2}}*1050,795*3,00 = 37,06\text{\ kN}$$
Mxco = MHco * ξ2 = 44921, 4863 * 0, 12 = 449, 21 kNm
Mxc = Mxco − Tc * 2l = 449, 21 − 85, 31 * 2 * 4, 86 = −379, 98 kNm
ξ | η | η' | Tc (kN) | Tc' (kN) | Qc (kN) | Mxoc (kNm) | Mxc (kNm) |
---|---|---|---|---|---|---|---|
0 | 0,000 | 0,091 | 0,00 | 8,65 | 25,94 | 0,00 | 0,00 |
0,1 | 0,021 | 0,130 | 85,31 | 12,35 | 37,06 | 449,21 | -379,98 |
0,2 | 0,055 | 0,216 | 223,42 | 20,53 | 61,58 | 1796,86 | -374,83 |
0,3 | 0,106 | 0,303 | 430,60 | 28,79 | 86,38 | 4042,93 | -142,50 |
0,4 | 0,176 | 0,400 | 714,96 | 38,01 | 114,03 | 7187,44 | 238,03 |
0,5 | 0,266 | 0,496 | 1080,56 | 47,13 | 141,40 | 11230,37 | 727,30 |
0,6 | 0,374 | 0,588 | 1519,29 | 55,87 | 167,62 | 16171,74 | 1404,25 |
0,7 | 0,500 | 0,663 | 2031,13 | 63,00 | 189,00 | 22011,53 | 2268,90 |
0,8 | 0,636 | 0,680 | 2583,60 | 64,62 | 193,85 | 28749,75 | 3637,13 |
0,9 | 0,766 | 0,567 | 3111,70 | 53,88 | 161,64 | 36386,40 | 6140,70 |
1 | 0,835 | 0,000 | 3391,99 | 0,00 | 0,00 | 44921,49 | 11951,30 |
Areas Mxc | Sum | ||
---|---|---|---|
Point | + | - | |
1 | 0,00 | -1614 | -1614,00 |
2 | 0,00 | -3207 | -3207,00 |
3 | 0,00 | -2198 | -2198,00 |
4 | 632,00 | -226 | 406,00 |
5 | 4101,00 | 0 | 4101,00 |
6 | 9057,00 | 0 | 9057,00 |
7 | 15610,00 | 0 | 15610,00 |
8 | 25100,00 | 0 | 25100,00 |
9 | 41555,00 | 0 | 41555,00 |
10 | 76891,00 | 0 | 76891,00 |
Point | Mxc | Mc | Final area |
---|---|---|---|
0,1 | -1614,00 | 50,50125 | -81509,0175 |
0,2 | -3207,00 | 151,5038 | -485872,687 |
0,3 | -2198,00 | 252,5063 | -555008,847 |
0,4 | 406,00 | 353,5088 | 143524,5728 |
0,5 | 4101,00 | 454,5113 | 1863950,841 |
0,6 | 9057,00 | 555,5138 | 5031288,487 |
0,7 | 15610,00 | 656,5163 | 10248219,44 |
0,8 | 25100,00 | 757,5188 | 19013721,88 |
0,9 | 41555,00 | 858,5213 | 35675852,62 |
1 | 76891,00 | 959,5238 | 73778744,51 |
144632912 |
C = 30,08 MN/m3 = 30080 kN/m3
E = 32 GPa Concrete C30/37
$$f_{f} = \frac{W*z*\left( H + H_{f} \right)}{I_{f}*c} = \frac{5710,9725*56,15*\left( 85,5 + 13,4 \right)}{22675,98*30080} = 0,0464\ m = 4,64\text{\ cm}$$
$$M_{\text{xc}}*{\overset{\overline{}}{M}}_{c} = 144\ 632\ 912$$
$$f_{s} = \int_{0}^{H}{\frac{M_{\text{xc}}*{\overset{\overline{}}{M}}_{c}}{E*I} = \frac{144\ 632\ 912}{32*10^{6}*120,59}} = \ 0,03748\ m = 3,75\text{\ cm}$$
$$f_{\text{ultimate}} = \frac{H}{2500} = \frac{85,5}{2500} = 0,0342\ m = 3,42\ cm$$
f = fultimate ≥ fs + ff
f = 3, 42 cm ≥ 4, 64 cm + 3, 75 cm = 8, 39 cm condition not fulfilled
Unfulfilled condition. This should increase thickness of the wall or use a higher grade of concrete