Zebranie wiatru SS

  1. General characteristics of the building

  1. Moment of inertia


$$\sum_{\mathbf{i}}^{\mathbf{n}}{\mathbf{I}_{\mathbf{i}}\mathbf{=}\mathbf{I}_{\mathbf{1}}\mathbf{+}\mathbf{I}_{\mathbf{2}}\mathbf{+ .. +}\mathbf{I}_{\mathbf{n}}}$$

nr h b Iy x2 P z Iy x2
  [cm] [cm] [cm4] [cm4] [cm2] [cm] [cm4] [cm4]
1 58 20 325187 650373 1160 877 892189640 1784379280
2 70 20 571667 1143333 1400 628 552137600 1104275200
3 181 20 9882902   3600 317 361760400 723520800
4 20 290 193333 386667 5800 360 751680000  
5 110 20 2218333   2200 353 274139800  
6 185 20 10552708   3700 0 0  
Sum     22653943 2180373     1025819800 3612175280
              Sum of I1 4662829397
nr h b Iy x2 P z Iy x2
[cm] [cm] [cm^4] [cm^4] [cm^2] [cm] [cm^4] [cm^4]
1 278 20 35808253 71616507 5560 767 3270886840 6541773680
2 63 20 416745 833490 1260 507 323881740 647763480
3 20 333 222000   6660 360 863136000  
4 15 20 5625   300 378 42865200  
5 567 20 303807105   11340 67 50905260  
 6 20 290 193333   1360 351 167553360  
 7 20 23 15333   460 360 59616000  
8 68 20 524053   5800 360 751680000  
Sum     304767450 72449997     1935755820 7189537160
              Sum 9502510427
nr h b Iy x2 P z Iy x2
  [cm] [cm] [cm^4] [cm^4] [cm^2] [cm] [cm^4] [cm^4]
1 356 20 75196693 150393387 10700 638 4355370800 8710741600
2 20 600 400000 800000 12000 360 1555200000 3110400000
3 374 20 87189373   7480 0 0  
Sum     87189373 151193387     0 11821141600
              Sum 12059524360
nr h b Iy x2 P z Iy x2
  [cm] [cm] [cm^4] [cm^4] [cm^2] [cm] [cm^4] [cm^4]
1 594 20 349307640 698615280 12000 607 4421388000 8842776000
2 414 600 3547897200   8280 0 0 0
Sum     3547897200 698615280     0 8842776000
              Sum 13089288480

I=65539016847 cm4=655,39016847m4

  1. Wind action

The base wind speed:

It was assumed that the relevant building is located in the I zone of the wind load.

(Szczecin A=50 m.a.s.l.) A≤300 m.a.s.l.

Value of the primary base wind speed: vb,0= 22 m/s

Assumed direction coefficient of the wind: cdir=1,0

Season coefficient: cseason=1,0

Base wind speed:


vb = vb, 0 * Cdir * Cseason = 22 m/s  * 1, 0 * 1, 0 = 22 m/s 

Pressure wind speed: qd=0,30

  1. Wind blowing on the long side of the building

h=85,5 m
b=36,5 m
d=18,36 m

Exposure coefficient:


$$c_{e}\left( z \right) = 3,0*\left( \frac{z}{10} \right)^{0,17}$$


$$c_{e}\left( z \right) = 3,0*\left( \frac{36,5}{10} \right)^{0,17} = 3,73$$

Value of exposure coefficient due to height

III category of terrain Height Ce(z)
[m] [-]
36,5 3,738618
39,6 3,790787
42,7 3,839671
45,8 3,885692
48,9 3,929197
85,5 4,320714


qp(z) = qb * ce(z)


$${\rho = 1,25\frac{\text{kg}}{m^{3}}\text{\ \ \ air\ density}\backslash n}{q_{p}\left( 36,5 \right) = 3,74*0,3 = 1,12}$$

0 category of terrain Height Exposure coefficient Pressure wind speed Peak value of pressure wind speed [qp]
[m]
ce(z)

qb, 0

$$\left\lbrack \frac{\text{kN}}{m^{2}} \right\rbrack$$
36,5 3,74 0,3 1,12
40 3,8 0,3 1,14
45 3,87 0,3 1,16
50 3,94 0,3 1,18
55 4,01 0,3 1,20
60 4,07 0,3 1,22
85,5 4,32 0,3 1,30

Peak value of pressure wind speed

Wind pressure acting on the outer surfaces of the structure, expressed by the formula:


we = qp(h) * cpe, 10


n

The values ​​of the external pressure coefficients for vertical walls of buildings in a rectangular plan:


$$\frac{h}{d} = \frac{85,5}{18,36} = 4,65$$


cpe, 10, D = +0, 8


cpe, 10, E = −0, 6825


$$w_{e,D} = 1,12*0,8 = 0,896\frac{\text{kN}}{m^{2}}$$


$$w_{e,E} = 1,12*\left( - 0,6825 \right) = - 0,7654819\frac{\text{kN}}{m^{2}}$$

Height Exposure coefficient Pressure wind speed Peak value of pressure wind speed External preassure for vertical walls Preassure on the surface External preassure for vertical walls Preassure on the surface Summation
[m] „D” area „E” area
36,5 3,738618 0,3 1,1215853 0,8 0,897268 -0,6825 -0,7654819 1,66275016
39,6 3,790787 0,3 1,1372362 0,8 0,909789 -0,6825 -0,7761637 1,68595273
42,7 3,839671 0,3 1,1519012 0,8 0,921521 -0,6825 -0,7861726 1,7076936
45,8 3,885692 0,3 1,1657076 0,8 0,932566 -0,6825 -0,7955955 1,72816157
48,9 3,929197 0,3 1,178759 0,8 0,943007 -0,6825 -0,804503 1,74751019
85,5 4,320714 0,3 1,2962141 0,8 1,036971 -0,6825 -0,8846661 1,92163744

Summation of the wind preassure

Changing the load to evenly distributed:


$$\frac{146,7531\ }{h} = \frac{146,7531\ }{85,5} = \mathbf{1,716\ }\frac{\mathbf{\text{kN}}}{\mathbf{m}^{\mathbf{2}}}$$

  1. Characteristic and design values

Longer side:


$$W_{e}^{*} = 1,716\frac{\text{kN}}{m^{2}}$$


$$\mathbf{W}_{\mathbf{e}}\mathbf{=}\mathbf{W}_{\mathbf{e}}^{\mathbf{*}}\mathbf{\bullet}\mathbf{\gamma}_{\mathbf{f}}\mathbf{=}\mathbf{1}\mathbf{,}\mathbf{716}\mathbf{\bullet}\mathbf{1}\mathbf{,}\mathbf{5}\mathbf{=}\mathbf{2}\mathbf{,}\mathbf{574}\frac{\mathbf{\text{kN}}}{\mathbf{m}^{\mathbf{2}}}$$

We use two ways of calculating value of q:

-way of bending moment

-way of area of influences

Then we will use bigger value in further calculations.

Calculation the bending moment:

Bending moment of each section, width each section is 1m:


$$M_{1} = 1,609\frac{\text{kN}}{m^{2}}*36,5\ m*16,25\ m*1\ m = 1071,80\ kNm$$


M2 = 1, 686 * 3, 1 * 38, 3 * 1 = 200, 18 kNm


M3 = 1, 707 * 3, 1 * 41, 4 * 1 = 219, 08 kNm


M4 = 1, 728 * 3, 1 * 44, 5 * 1 = 238, 37 kNm


M5 = 1, 748 * 3, 1 * 47, 6 * 1 = 257, 94 kNm


M6 = 1, 921 * 36, 5 * 67, 2 * 1 = 4711, 83 kNm


$$\sum_{}^{}M_{i} = 6699,2\ kNm$$


$$M = \frac{qh^{2}}{2} \rightarrow q = \frac{2M}{h^{2}} = \frac{2*6699,2}{{85,5}^{2}} = 1,83\frac{\text{kN}}{m^{2}}$$


n

Calculation the area of influences:

Rectangular area of each section:


$$A_{1} = 1,669\frac{\text{kN}}{m^{2}}*36,5m = 60,92\frac{\text{kN}}{m}$$


$$A_{2} = 1,686\frac{\text{kN}}{m^{2}}*3,1\ m = 5,23\frac{\text{kN}}{m}$$


$$A_{3} = 1,707\frac{\text{kN}}{m^{2}}*3,1\ \ m = 5,29\frac{\text{kN}}{m}$$


$$A_{4} = 1,728\frac{\text{kN}}{m^{2}}*3,1\ \ m = 5,36\frac{\text{kN}}{m}$$


$$A_{5} = 1,748\frac{\text{kN}}{m^{2}}*3,1\ m = 5,42\frac{\text{kN}}{m}$$


$$A_{6} = 1,9,21\frac{\text{kN}}{m^{2}}*36,5\ m = 70,12\frac{\text{kN}}{m}$$


$$\sum_{}^{}A_{i} = 152,34\frac{\text{kN}}{m}$$


$$q = \frac{\sum_{}^{}A_{i}}{H} = \frac{152,34\frac{\text{kN}}{m}}{85,5m} = 1,78\frac{\text{kN}}{m^{2}}$$

The bigger value of q is from the first method ($1,83\frac{\text{kN}}{m^{2}}$) so we will use this for further calculations.

  1. Calculations of internal forces:

We consider wall 3 (axis 3) in our calculations.

Areas:


F3A = F3C = 5, 36 • 0, 20 + 6, 00 • 0, 2 = 2, 272m2


F3B = 3, 74 • 0, 20 = 0, 478m2

Moments of inertia:


$$I_{3B} = \frac{{3,74}^{3}*0,20}{12} = 0,872\text{\ m}^{4}$$


$$I_{3A} = I_{3C} = \frac{{5,36}^{3}*0,20}{12} + 0,20*5,36*{1,52}^{2} + {1,26}^{2}*6*0,2 + \frac{{0,2}^{3}*6}{12} = 6,9523\ m^{4}$$

There is two lines of openings, symmetrical:


$$\alpha = \sqrt{\left( \frac{2l^{2}}{\sum_{}^{}I_{i}} + \frac{1}{F_{1}} \right)*\frac{12I_{p}}{h*b^{3}}}$$

$\sum_{}^{}I_{i} = 6,9523*2 + 0,872 = 14,7766\ m^{4}$ - total moment of inertia, sum for own central of gravity

F1 = F3A = 2, 272m2 – area of cross-section no 1


l = 1, 36 + 1, 63 + 1, 87 = 4, 86m

h = 3,00 m – storey height

b = 1,63 m – width of opening

Ip – moment of inertia of header


$$I_{p} = \frac{d*h_{p}^{3}}{12*\left\lbrack 1 + 2,8{*\left( \frac{h_{p}}{b} \right)}^{2} \right\rbrack} = \frac{0,20*{0,8}^{3}}{12*\left\lbrack 1 + 2,8*\left( \frac{0,80}{1,63} \right)^{2} \right\rbrack} = 0,005096\ m^{4}$$

d = 0,20 m – thickness of wall

hp = 0,80 m – height of header


$$\alpha = \sqrt{\left( \frac{2{*4,86}^{2}}{14,7766} + \frac{1}{2,272} \right)*\frac{12*0,005096}{3,00*{1,63}^{3}}} = 0,1308$$

We use the Rossman approach:


α * H = 0, 1308 * 85, 5 = 11, 18 m

Individual values for different strips:

xi = ξ * H ξ − − thickness of slide η, η’ = f(α * H ; ξ)

x0 = 0, 0 * H = 0, 0 * 85, 5 m = 0, 00 m ηo = 0, 000    and    η0 = 0, 091

x1 = 0, 1 * H = 0, 1 * 85, 5 m = 8, 55 m η1 = 0, 021 and η1 = 0, 130

x2 = 0, 2 * 85, 5 m = 17, 10 m η2 = 0, 055 and η2 = 0, 216

x3 = 0, 3 * 85, 5 m = 25, 65 m η3 = 0, 106 and η3 = 0, 303

x4 = 0, 4 * 85, 5 m = 34, 2 m η4 = 0, 176 and η4 = 0, 400

x5 = 0, 5 * 85, 5 m = 42, 75 m η5 = 0, 266 and η5 = 0, 496

x6 = 0, 6 * 85, 5 m = 51, 3 m η6 = 0, 374 and η6 = 0, 588

x7 = 0, 7 * 85, 5 m = 59, 85 m η7 = 0, 500 and η7 = 0, 663

x8 = 0, 8 * 85, 5 m = 68, 4 m η8 = 0, 636 and η8 = 0, 680

x9 = 0, 9 * 85, 5 m = 76, 95 m η9 = 0, 766 and η9 = 0, 567

x10 = 1, 0 * 85, 5 m = 85, 5 m η10 = 0, 835 and η10 = 0, 000

Data for the calculations of internal forces:


$$w_{c} = q*L*\frac{I}{\sum_{}^{}I} = 1,83*36,5*\frac{120,59}{655,39} = 12,29\ kN/m$$


wo = wc * 1, 5 = 12, 29 * 1, 5 = 18, 435 kN/m


$$\psi = \frac{l}{\sum_{}^{}I_{i}}*\frac{12{*I}_{p}}{h_{k}*b^{3}} = \frac{4,86}{14,7766}*\frac{12*0,005096}{3,00*{1,63}^{3}} = 0,00155$$


$$M_{H}^{o} = \frac{w_{o}*H^{2}}{2} = \frac{18,435\ *{85,50}^{2}}{2} = 67382,23\text{\ kNm}$$


THo = ωo * H = 18, 435 * 85, 50 = 1576, 19 kN

Shearing forces:


$$T = \eta*\frac{\psi}{\alpha^{2}}*M_{H}^{o} = 0,021*\frac{0,00155}{{0,1308}^{2}}*67382,23 = 127,96\text{\ kN}$$


$$T^{'} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{H}^{o} = 0,13*\frac{0,00155}{{0,1308}^{2}}*1576,19 = 18,53\text{\ kN}$$


$$Q = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{H}^{o}*h = 0,13*\frac{0,00155}{{0,1308}^{2}}*1576,19*3,00 = 55,59\text{\ kN}$$


Mxo = MHo * ξ2 = 67382, 23 * 0, 12 = 673, 8223 kNm


Mx = Mxo − T * 2l = 673, 82 − 127, 96 * 2 * 4, 86 = −569, 96 kNm

Tabulated results:

ξ η η' T (kN) T' (kN) Q (kN) Mxo (kNm) Mx (Knm)
0 0,000 0,091 0,00 12,97 38,91 0,00 0,00
0,1 0,021 0,130 127,96 18,53 55,59 673,82 -569,96
0,2 0,055 0,216 335,14 30,79 92,36 2695,29 -562,24
0,3 0,106 0,303 645,90 43,19 129,56 6064,40 -213,75
0,4 0,176 0,400 1072,44 57,01 171,04 10781,16 357,05
0,5 0,266 0,496 1620,85 70,70 212,09 16845,56 1090,94
0,6 0,374 0,588 2278,93 83,81 251,43 24257,60 2106,38
0,7 0,500 0,663 3046,70 94,50 283,50 33017,29 3403,36
0,8 0,636 0,680 3875,40 96,92 290,77 43124,63 5455,70
0,9 0,766 0,567 4667,55 80,82 242,45 54579,61 9211,06
1 0,835 0,000 5087,99 0,00 0,00 67382,23 17926,96

Calculating the stresses for 1,0 m area:


$$M_{1} = M_{x}*\frac{I_{1}}{\sum_{}^{}I_{i}} = 17926,96*\frac{6,952}{14,7766} = 8434,52\text{\ kNm}$$


$$\sigma_{1} = \frac{M_{1}*a}{2*I_{1}} = \frac{8434,52*5,56}{2*6,952} = 3372,69\ kN/m^{2}$$


$$\sigma_{2} = \sigma_{1}*\frac{\left( \frac{a}{2} - 1,0 \right)}{\frac{a}{2}} = 3073,31*\frac{\left( \frac{5,56}{2} - 1,0 \right)}{\frac{5,56}{2}} = 2159,49\ kN/m^{2}$$

Final total perpendicular force:


N = N1 + N2


$$N_{1} = \frac{T}{a} = \frac{5087,99}{5,56}*1mb = 1003,55\text{\ kN}$$


$$N_{2} = \frac{\sigma_{1} + \sigma_{2}}{2}*d*1mb = \frac{3372,69 + 2159,49}{2}*0,2*1,0 = 553,22\text{\ kN}$$


N = 553, 22 kN + 1003, 55 kN = 1556, 77 kN

Tabulated results:

ξ M1 (kNm) σ1 (kN/m2) σ2 (kN/m2) N2 (kN) N1 (kN) N (kN)
0 0,00 0,00 0,00 0,00 0,00 0,00
0,1 -268,16 -107,23 -68,66 -17,59 25,24 7,65
0,2 -264,53 -105,78 -67,73 -17,35 66,10 48,75
0,3 -100,57 -40,21 -25,75 -6,60 127,40 120,80
0,4 167,99 67,17 43,01 11,02 211,53 222,54
0,5 513,28 205,24 131,42 33,67 319,69 353,36
0,6 991,04 396,28 253,74 65,00 449,49 514,50
0,7 1601,26 640,29 409,97 105,03 600,93 705,95
0,8 2566,87 1026,41 657,20 168,36 764,38 932,74
0,9 4333,75 1732,92 1109,57 284,25 920,62 1204,87
1 8434,52 3372,69 2159,49 553,22 1003,55 1556,77

Deflection:


f = fultimate ≥ fs + ff

Additional 0,5 m for foundation in each direction.

B + 0,5 m + 0,5 m = 18,36 + 1 = 19,36 m

L + 0,5 m +0,5 m = 36,5 + 1 = 37,5 m


w = q * L = 1, 83 * 36, 5 = 66, 795 kN/m


$$W = w*H = 66,795\ \frac{\text{kN}}{m}*85,5\ m = 5710,97\ kN$$


$$z = \frac{H}{2} + H_{f} = \frac{85,5}{2} + 13,4 = 56,15\ m$$


$$I_{f} = \frac{bh^{3}}{12} = \frac{\left( L + 1 \right)\left( B + 1 \right)^{3}}{12} = \frac{37,5*{19,36}^{3}}{12} = 22675,9808\ m^{4}$$

Calculations Mx for characteristic values:


$$w_{c} = q*L*\frac{I}{\sum_{}^{}I} = 1,83*36,5*\frac{120,59}{655,39} = 12,29\ kN/m$$


$$\psi = \frac{l}{\sum_{}^{}I_{i}}*\frac{12{*I}_{p}}{h_{k}*b^{3}} = \frac{4,86}{14,7766}*\frac{12*0,005096}{3,00*{1,63}^{3}} = 0,00155$$


$$M_{\text{Hc}}^{o} = \frac{w_{c}*H^{2}}{2} = \frac{12,29*{85,50}^{2}}{2} = 44921,4863\text{\ kNm}$$


THco = ωc * H = 12, 29 * 85, 50 = 1050, 795 kN

Shearing forces:


$$T_{c} = \eta*\frac{\psi}{\alpha^{2}}*M_{\text{Hc}}^{o} = 0,021*\frac{0,00155}{{0,1308}^{2}}*44921,4863 = 85,31\text{\ kN}$$


$$T_{c}^{'} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{\text{Hc}}^{o} = 0,130*\frac{0,00155}{{0,1308}^{2}}*1050,795 = 12,35\text{\ kN}$$


$$Q_{c} = \eta^{'}*\frac{\psi}{\alpha^{2}}*T_{\text{Hc}}^{o}*h = 0,130*\frac{0,00155}{{0,1308}^{2}}*1050,795*3,00 = 37,06\text{\ kN}$$


Mxco = MHco * ξ2 = 44921, 4863 * 0, 12 = 449, 21 kNm


Mxc = Mxco − Tc * 2l = 449, 21 − 85, 31 * 2 * 4, 86 = −379, 98 kNm

ξ η η' Tc (kN) Tc' (kN) Qc (kN) Mxoc (kNm) Mxc (kNm)
0 0,000 0,091 0,00 8,65 25,94 0,00 0,00
0,1 0,021 0,130 85,31 12,35 37,06 449,21 -379,98
0,2 0,055 0,216 223,42 20,53 61,58 1796,86 -374,83
0,3 0,106 0,303 430,60 28,79 86,38 4042,93 -142,50
0,4 0,176 0,400 714,96 38,01 114,03 7187,44 238,03
0,5 0,266 0,496 1080,56 47,13 141,40 11230,37 727,30
0,6 0,374 0,588 1519,29 55,87 167,62 16171,74 1404,25
0,7 0,500 0,663 2031,13 63,00 189,00 22011,53 2268,90
0,8 0,636 0,680 2583,60 64,62 193,85 28749,75 3637,13
0,9 0,766 0,567 3111,70 53,88 161,64 36386,40 6140,70
1 0,835 0,000 3391,99 0,00 0,00 44921,49 11951,30
Areas Mxc     Sum
 Point + -  
1 0,00 -1614 -1614,00
2 0,00 -3207 -3207,00
3 0,00 -2198 -2198,00
4 632,00 -226 406,00
5 4101,00 0 4101,00
6 9057,00 0 9057,00
7 15610,00 0 15610,00
8 25100,00 0 25100,00
9 41555,00 0 41555,00
10 76891,00 0 76891,00
Point Mxc Mc Final area
0,1 -1614,00 50,50125 -81509,0175
0,2 -3207,00 151,5038 -485872,687
0,3 -2198,00 252,5063 -555008,847
0,4 406,00 353,5088 143524,5728
0,5 4101,00 454,5113 1863950,841
0,6 9057,00 555,5138 5031288,487
0,7 15610,00 656,5163 10248219,44
0,8 25100,00 757,5188 19013721,88
0,9 41555,00 858,5213 35675852,62
1 76891,00 959,5238 73778744,51
      144632912

C = 30,08 MN/m3 = 30080 kN/m3

E = 32 GPa Concrete C30/37


$$f_{f} = \frac{W*z*\left( H + H_{f} \right)}{I_{f}*c} = \frac{5710,9725*56,15*\left( 85,5 + 13,4 \right)}{22675,98*30080} = 0,0464\ m = 4,64\text{\ cm}$$


$$M_{\text{xc}}*{\overset{\overline{}}{M}}_{c} = 144\ 632\ 912$$


$$f_{s} = \int_{0}^{H}{\frac{M_{\text{xc}}*{\overset{\overline{}}{M}}_{c}}{E*I} = \frac{144\ 632\ 912}{32*10^{6}*120,59}} = \ 0,03748\ m = 3,75\text{\ cm}$$


$$f_{\text{ultimate}} = \frac{H}{2500} = \frac{85,5}{2500} = 0,0342\ m = 3,42\ cm$$


f = fultimate ≥ fs + ff

f = 3, 42 cm  ≥ 4, 64 cm + 3, 75 cm = 8, 39 cm condition not fulfilled

Unfulfilled condition. This should increase thickness of the wall or use a higher grade of concrete


Wyszukiwarka

Podobne podstrony:
por´¬Żd fizjologiczny ss
Power D, zebranie zarządu
Główne rodzaje zebrań i ich funkcje
mg ss 2011z 3 w
Energia wiatru(1)
pytania zebrane, egzamin biosyf pytania
Zebranie z rodzicami- prawa dziecka(1), Różne pracy z pedagogiki
DERMA zebrane B.G. (2), Choroby skórne i weneryczne, Dermatologia, giełdy
Referat - Rola Rodziców, KATECHEZA, Zebrania z rodzicami
Nie fair by Mroczna88, Fanfiction, Harry Potter, ss hg
PROTOKÓŁ Z OTWARTEGO ZEBRANIA ZARZĄDU 10 marca 2013, fireman, OSP
cw 2 czesc dosw SS, Szkoła, Chemia
testy?rma wyklady WSZYSTKIE testy zebrane
gielda pato pytania zebrane
gnozja pytania zebrane
PRZEBIEG ZEBRANIA Z RODZICAMI Luty kl II
WPLYW WIATRU NA TRAJEKTORIE POCISKU

więcej podobnych podstron