uzupełnienie


1.3

Fotoogniwo to element półprzewodnikowy, w którym następuje przemiana energii promieniowania słonecznego (światła) w energię elektryczną. Fotoogniwo jest zbudowane z półprzewodnika i tworzy złącze p-n, na które pada światło. Padające na złącze fotony o energii większej od szerokości przerwy energetycznej półprzewodnika powodują powstanie par elektron-dziura. Pole elektryczne wewnątrz półprzewodnika związane z obecnością złącza p-n, przesuwa nośniki różnych rodzajów w różne strony. Elektrony trafiają do obszaru n, dziury do obszaru p. Rozdzielenie nośników ładunku w złączu powoduje powstanie na nim zewnętrznego napięcia elektrycznego. Ponieważ rozdzielone nośniki są nośnikami nadmiarowymi (mają nieskończony czas życia), a napięcie na złączu p-n jest stałe, oświetlone złącze działa jako ogniwo elektryczne.

6.5

Energia wiazania jadra atomowego określa energię potrzebną do rozdzielenia jądra atomowego na protony i neutrony. Energia wiązania jest ważnym kryterium decydujacym o trwałości jadra atomowego.

Używa się też pojęcia energia wiązania ostatniego nukleonu.

W związku z równoważnością masy i energii, energię wiązania można obliczyć na podstawie różnicy mas jadra i nukleonów z których jest zbudowane. Energią jest różnica mas, tj. masa nukleonów tworzących jądro, wziętych każdy z osobna, i masy jądra, pomnożona przez c2, gdzie c = 3 * 108 m/s jest prędkością światła w próżni.

Wykres energii wiązania na nukleon od liczby nukleonów w jądrze, czyli od tzw. liczby masowej A, jest krzywą która szybko narasta dla małych wartości A i stopniowo opada dla dużych A. Reakcja jądrowa przeprowadzane tak, aby uzyskać wyraźny wzrost energii wiązania, mogą być obfitym źródłem energii jądrowej. Takie są reakcje syntezy lekkich jąder (np. synteza helu) i reakcje rozpadu ciężkich jąder (np. rozpad uranu).

7.1

Bomba atomowa

Bomba atomowa czerpie swoją energię z reakcji rozszczepienia ciężkich jąder atomowych (np. uranu lub plutonu) na lżejsze pod wpływem bombardowania neutronami. Rozpadające się jądra emitują kolejne neutrony, które bombardują inne jądra, wywołując reakcję łańcuchową.

Nazwa bomba atomowa może być myląca, gdyż konwencjonalne chemiczne materiały wybuchowe czerpią swą energię z wiązań atomowych; ponadto inne rodzaje broni nuklearnej są nie mniej atomowe.

Zasada działania bomby atomowej polega na wytworzeniu/przekroczeniu w jak najkrótszym czasie masy krytycznej ładunku jądrowego. Przekroczenie masy krytycznej uzyskuje się poprzez połączenie kilku porcji materiału rozszczepialnego lub zapadnięcie materiału uformowanego w powłokę. Połączenie to musi odbyć się szybko by reakcja nie została przerwana już w początkowej fazie w wyniku energii powstającej podczas rozszczepiania jąder dlatego do połączenia materiałów rozszczepialnych używa się konwencjonalnego materiału wybuchowego. Reakcja łańcuchowa wydziela ogromną ilość energii,ogromna temperatura i energia produktów rozpadu powodują rozproszenie materiału rozszczepialnego i przerwanie reakcji łańcuchowej. Jako ładunku nuklearnego używa się uranu-235 lub plutonu-239.

Z jednego kilograma U-235 można uzyskać do 82 TJ (teradżuli) energii. Typowy czas trwania reakcji łańcuchowej to 1 μs, więc moc wynosi 82 EW/kg.

Bomba wodorowa

Zwana jest też bombą termojądrową. Zasada działania bomby wodorowej opiera się na wykorzystaniu reakcji termojądrowej, czyli łączenia się lekkich jąder atomowych (np. wodoru lub helu) w cięższe, czemu towarzyszy wydzielanie ogromnej ilości energii. Ponieważ rozpoczęcie i utrzymanie fuzji wymaga bardzo wysokiej temperatury, bomba wodorowa zawiera ładunek rozszczepialny (pierwszy stopień), którego detonacja inicjuje fuzję w ładunku drugiego stopnia.

Ładunki drugiego stopnia mogą być łączone w prawie dowolnej ilości i wielkości (jedna reakcja fuzji inicjuje następną), co umożliwia budowę broni o mocy daleko większej niż w przypadku zwykłej bomby atomowej.

7.4

Paliwo jądrowe jest to substancja zawierająca materiał rozszczepialny wykorzystywana do uzyskiwania energii w reaktorach jądrowych.

Zawiera najczęściej wzbogacony uran (tj. uran charakteryzujący się większą od naturalnej względną zawartością izotopu 235U, mieszczącą się w granicach od kilku do 90%), w różnych formach fizyko-chemicznych: jako ciało stałe (tlenek, węglik, stop metaliczny, metal; w postaci prętów, pastylek itp.), w postaci ciekłej (jako roztwór siarczanu, lub azotanu uranylu), lub jako gaz (sześciofluorek uranu). Drugim materiałem wykorzystywanym jako paliwo jądrowe jest izotop plutonu 239Pu. Rodzaj paliwa dopasowany jest do danego typu reaktora. Paliwo powinno składać się z materiałów, które w czasie pracy reaktora nie reagują między sobą ani z chłodziwem.

W czasie umieszczenia paliwa jądrowego w reaktorze wzrasta w nim ilość produktów rozszczepienia i aktywacji, aż do poziomu wymuszającego wymianę danej porcji paliwa jądrowego. Paliwo jądrowe wydobyte z reaktora nazywa się wypalonym (jest to najbardziej radioaktywna postać paliwa jądrowego), po pewnym czasie poddaje się je procesowi oczyszczenia w celu ponownego wykorzystania.

12.1

Ferromagnetyzm jest zjawiskiem, w którym materia wykazuje własne, spontaniczne namagnesowanie. Jest jedną z najsilniejszych postaci magnetyzmu i jest odpowiedzialny za większość magnetycznych zachowań spotykanych w życiu codziennym. Razem z ferrimagnetyzmem jest podstawą istnienia wszystkich magnesów trwałych (jak i zauważalnego przyciągania innych ferromagnetycznych metali przez magnesy trwałe).

Atom jako dipol magnetyczny

Spin elektronu, oraz jego orbitalny moment pędu, wytwarza magnetyczny moment dipolowy. Elektron w ruchu, jako obdarzony ładunkiem elektrycznym, wytwarza pole magnetyczne. W mechanice klasycznej ten układ odpowiada kulce, posiadającej ujemny ładunek elektryczny, krążącej wokół własnej osi (spin) oraz krążącej wokół jądra posiadającego dodatni ładunek elektryczny. Oba zjawiska podobnie jak kołowy przewodnik z prądem wytwarzają pole magnetyczne, ale elektron jako cząstka kwantowa posiada wyraźne różnice - spin może przyjmować tylko dwie wartości (umownie określane jako góra i dół), a orbitalny moment magnetyczny przyjmuje tylko określone wartości. W wielu materiałach (ściślej tych, które posiadają zapełnione powłoki elektronowe) całkowity moment dipolowy wszystkich elektronów wynosi zero (tzw. sparowanie - taka sama liczba spinów góra i dół powoduje wzajemne znoszenie się ich momentów). Jedynie atomy z częściowo zapełnioną powłoką (niesparowanymi spinami) posiadają wypadkowy moment magnetyczny różny od zera. Dipole te ustawiają się równolegle do linii zewnętrznego pola, ale z ustawienia tego wytrącane są przez drgania termiczne. W takich materiałach wytwarza się wewnętrzne pole magnetyczne skierowane zgodnie z zewnętrznym polem magnetycznym. Materiały te to paramagnetyki (substancje o przeciwnych własnościach to diamagnetyki).

Wśród paramagnetyków są takie substancje w których oddziaływania między atomami powodują ustawianie sąsiednich dipoli magnetycznych w tym samym kierunku, nawet bez zewnętrznego pola magnetycznego, co sprawia że wszystkie dipole magnetyczne ustawione są w tym samym kierunku, materiały te posiadają pole magnetyczne pomimo braku zewnętrznego pola magnetycznego ( namagnesowanie spontaniczne). Drgania cieplne sieci wytrącają atomy z ich uporządkowania, aż w pewnej temperaturze zwanej temperaturą Curie drgania sieci są tak duże, że oddziaływanie atomów nie jest w stanie utrzymać jednakowego ustawienia dipoli magnetycznych, materiał przestaje być ferromagnetykiem. Utrzymanie dużych obszarów jednakowego namagnesowania wytwarza pole magnetyczne w dużym obszarze co jest stanem o bardzo dużej energii, dlatego kryształ może zmienić namagnesowanie części swoich obszarów tak by pole magnetyczne na zewnątrz ciała było jak najmniejsze, tak zachowuje się większość ferromagnetyków. Obszary o jednakowym namagnesowaniu nazywamy domenami magnetycznymi. W zależności od materiału domeny te mogą łatwo (ferromagnetyki miękkie) lub trudno (ferromagnetyki twarde) zmieniać kierunek namagnesowania oraz granice domen.

W ferromagnetykach miękkich bez obecności zewnętrznego pola magnetycznego domeny ustawiają się tak, by zminimalizować energię ciała jako całości. Wokół ciał takich pozostaje tylko niewielkie pole magnetyczne.

W ferromagnetykach twardych wykonanych w obecności silnego zewnętrznego pola magnetycznego uporządkowanie domen pozostaje nawet po usunięciu zewnętrznego pola magnetycznego i nie zmienia się, te materiały znane są one jako magnesy trwałe

Domeny magnetyczne

Nawiązując do klasycznej teorii elektromagnetyzmu, dwa pobliskie dipole magnetyczne powinny ustawiać się w przeciwległych, tzn. antyrównoległych kierunkach, analogicznie do dwóch swobodnych magnesów (co utworzyłoby materiał antyferromagnetyczny). Jednak w ferromagnetyku, gdzie między elektronami zachodzi oddziaływanie elektrostatyczne, stan układu może być bardziej stabilny i energetycznie korzystniejszy wówczas, gdy spinowe momenty magnetyczne elektronów ustawią się w tym samym kierunku (równolegle). Ich energia elektrostatyczna zostaje obniżona i jej różnica nazywana jest energią wymiany, a całe zjawisko - wymiennym oddziaływaniem wzajemnym. Takie grupy dipoli ukierunkowanych równolegle tworzą obszary spontanicznego namagnesowania, zwane domenami magnetycznymi (obszarami Weissa). Materia w domenie jest więc całkowicie namagnesowana w jednym kierunku, zwykle wzdłuż jedenj z głównych osi krystalograficznych (w metalu).

Jednak w większej skali (po wielu tysiącach jonów) przewaga energii wymiany ustępuje na korzyść klasycznej tendencji dipoli do ustawiania się antyrównolegle. Wyjaśnia to, dlaczego nienamagnetyzowany ferromagnetyk nie posiada wypadkowego pola magnetycznego (bądź posiada niewielkie) - momenty magnetyczne wszystkich, bezładnie zorientowanych domen znoszą się, dając zerowy bądź zbliżony do zera wypadkowy moment magnetyczny całego ciała.
Przejście pomiędzy dwiema domenami, gdzie magnetyzacja zmienia kierunek, nazywane jest granicą domenową (np. granica Blocha/Néela, zależnie od tego, czy magnetyzacja zmienia się równolegle/prostopadle do powierzchni domeny) i jest stopniowym przejściem w skali atomowej (obejmuje dystans ok. 300 jonów żelaza). Istnienie domen zostało potwierdzone doświadczalnie przez N.S. Akułowa i jego zespół, mają one rozmiary liniowe rzędu 10-5m-10-4m.

Ferromagnetyk w polu magnetycznym

A więc zwykły kawałek materiału ferromagnetycznego (np. żelaza) nie posiada wypadkowego momentu magnetycznego. Jeżeli jednak zostanie on umieszczony w zewnętrznym polu magnetycznym, następuje namagnesowanie, czyli uporządkowanie domen - taki ruch ich ścianek, aby możliwie największa objętość ciała posiadała momenty magnetyczne skierowane równolegle do kierunku pola magnetycznego. Rozmiary domen początkowo namagnesowanych w kierunku zbliżonym do kierunku pola magnesującego zwiększają się kosztem innych, przyłączając sąsiednie atomy. W silnym polu domeny o innych kierunkach pierwotnego namagnesowania obracają się. Ponieważ ruch ścianek domen jest procesem skokowym, obserwuje się charakterystyczną schodkową strukturę krzywej namagnesowania w funkcji zewnętrznego pola magnetycznego (zjawisko Barkhausena).
Wewnątrz ciała ferromagnetycznego pole może setki, nawet tysiące razy przewyższać przyłożone pole zewnętrzne. Domeny pozostaną jednakowo zorientowane nawet wówczas, gdy zewnętrzne pole zostanie usunięte, tworząc trwałą magnetyzację, która, jako funkcja zewnętrznego pola jest uwidoczniona na krzywej histerezy. Jednak wypadkowa magnetyzacja może być zniszczona poprzez podgrzanie, a następnie powolne oziębienie (czyli wyżarzanie) materiału, bez wpływu zewnętrznego pola.

Punkt Curie

Stopień samorzutnego namagnesowania (istnienia domen), całkowity w temperaturze zera bezwzględnego, w miarę wzrostu temperatury maleje - zwiększają się termiczne oscylacje atomów, "rywalizując" z ich ferromagnetyczną tendencją do odpowiedniego ustawiania się. Kiedy temperatura przekroczy pewną, dla danego materiału ściśle określoną granicę, zwaną punktem Curie, następuje przejście fazowe drugiego rodzaju i ciało traci swe właściwości ferromagnetyczne, stając się paramagnetykiem.

Diamagnetyzm - zjawisko polegające na indukcji w ciele, znajdującym się w zewnętrznym polu magnetycznym pola przeciwnego, osłabiającego działanie zewnętrznego pola.

Diamagnetyzm występuje przeważnie w związkach chemicznych posiadających wiązania wielokrotne lub układ aromatyczny. Zewnętrzne pole indukuje w takim układzie prąd elektryczny, który powoduje powstanie pola magnetycznego, skierowanego przeciwnie do pola zewnętrznego.

Diamagnetyki samorzutnie nie wykazują właściwości magnetycznych. Diamagnetyk jest odpychany przez magnes. Umieszczenie diamagnetyka w zewnętrznym polu magnetycznym powoduje powstanie w tym materiale pola magnetycznego skierowanego przeciwnie. Dla tych ciał względna przenikalność magnetyczna ośrodka jest nieco mniejsza od jedności. Do diamagnetyków zalicza się: gazy szlachetne, prawie wszystkie metale i metaloidy nie wykazujące własności para- lub ferromagnetycznych (np: bizmut, krzem, cynk, magnez, złoto, miedź) a także fosfor, grafit, woda oraz wiele związków chemicznych. Diamagetyczne są też DNA i wiele białek.

Zjawisko diamagnetyzmu zostało po raz pierwszy opisane przez holenderskiego lekarza i przyrodnika S.J. Burgmansa w 1778 roku. Nazwę "diamagnetyzm" stworzył jednak i rozpowszechnił Michael Faraday w 1845 r.

Paramagnetyzm - zjawisko polegające na porządkowaniu się większości spinów elektronów ciała zgodnie z liniami zewnętrznego pola magnetycznego. Właściwości paramagnetyczne posiadają substancje o niesparowanych elektronach. Substancja taka, tzw. paramagnetyk jest przyciągany przez magnes, jednak znacznie słabiej niż ferromagnetyk.

Paramagnetyki mają przenikalność magnetyczną μ niewiele większą od jedności. Dla ferromagnetyków μ jest wielokrotnie większe od 1.

Przykłady paramagnetyków:

14.7

Spektroskopia NMR, Spektroskopia Magnetycznego Rezonansu Jądrowego (ang. Nuclear Magnetic Resonance - potocznie w języku polskim: rezonans magnetyczny z pominięciem słowa "jądrowy", który większości ludzi może się źle kojarzyć, dlatego w medycynie zdecydowano się na krótszą nazwę oraz skrót MR, w chemii używa się pełnej nazwy) - jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie.

Spektroskopia ta polega na wzbudzaniu spinów jądrowych znajdujących się w zewnętrznym polu magnetycznym poprzez szybkie zmiany pola magnetycznego, a następnie rejestrację promieniowania elektromagnetycznego powstającego na skutek zjawisk relaksacji, gdzie przez relaksację rozumiemy powrót układu spinów jądrowych do stanu równowagi termodynamicznej. NMR jest zatem jedną ze spektroskopii absorpcyjnych.

W biochemii wykorzystuje się metodę rezonansu jądrowo-magnetycznego - jest to metoda oznaczania zawartości wody i suchej substancji w produktach spożywczych. Wykorzystuje ona zjawisko pochłaniania energii pola elektromagnetycznego w zakresie fal radiowych przez jądra atomów wodoru (z wody) znajdujących się w badanym materiale. Metoda NMR jest jedną z dokładniejszych metod, dzięki której możemy otrzymać najwięcej powtarzających się wyników. Nadaje się ona do oznaczania zawartości wody w przedziale od 3 do 100%.

W medycynie technikę NMR stosuje się głównie w celu uzyskania obrazów tomograficznych. Stąd spotyka się również określenia tomografia rezonansu magnetycznego i skrótu MRI (ang. Magnetic Resonance Imaging) lub znacznie rzadziej MRT (ang. Magnetic Resonance Tomography)



Wyszukiwarka

Podobne podstrony:
Leczenie uzupełniające nowotworów narządu rodnego chemioterapia, radioterapia
Wałki uzupełnienie
Uzupełnienia
TEST UZUPEŁNIANIA ZDAŃ
Printing bbjorgos lekcja41 uzupelnienie A
exam z farmy 2014 (uzupełniony)
Tekst do uzupełnienia, konspekty, KONSPEKT, WOS, klasa II
EGZAMIN UZUPEŁNIAJĄCY 25-06-2005, EGZAMIN PYTANIA
EKONOMIA MIĘDZYNARODOWA 16.11.2014-uzupełnienie, V rok, Wykłady, Ekonomia międzynarodowa
Różnice w budowie kręgów uzupełnione
PRACA KONTROLNA I UZUPEŁNIAJĄCE UZ LICEUM OGÓLNOKSZTAŁCĄCE SEMESTR I
4 uzupełnienie do kolokwium 1
11 Uzupełnienie Zależności pokarmowe w biocenozie
uzupełnienie
Informacje uzupełniające Projektowanie elementów oporowych przenoszących siłę poziomą w stopach słup
cukry metabolizm uzupelniony
Fizyka Uzupelniajaca Prad elektryczny I id 177229
Fizyka Uzupełniająca Bryła sztywna

więcej podobnych podstron