Koło:

0x01 graphic

1) jeśli detH(x0,y0)<0, to funkcja f nie ma ekstremum lokalnego w punkcie (x0,y0)

2) jeśli detH(x0,y0)>0 to f ma ekstrem lok. W punkcie (x0,y0)

MIN f”x(x0,y0)>0 ; MAX f”x(x0,y0)<0

0x01 graphic

0x01 graphic

(c) ` = 0

(ax + b) ` = a

(xa) ` = a ∙ xa-1

(a / x) ` = -a / x2

(n√x) `= 1 / n ∙ n√xn-1

(sin x) ` = cos x

(cos x) ` = - sin x

(tg x) ` = 1 / cos2 x

(ctg x) ` = - 1 / sin2 x

(ex) ` = ex

(ax) ` = ax ∙ ln a

(lnx) ` = 1 / ln x

(arc sin x) `=1/√1-x2

(arc cosx)`=-1/√1-x2

(arc tg x) `=1 / 1+x2

(arc ctg x)`= -1/1+x2

[f(x)±g(x)] '=f '(x)±g '(x)

[cf(x)] '= cf `(x)

[f(x) ∙g(x)] '=f '(x)∙g(x)+g '(x)∙f(x)

[]'=

{f[g(x)]} '=f '[g(x)]∙g '(x)

log e=1

logab=c ac=b

logaa=1

loga1=0

ex=R

eo=1

pier x>=0

log x>0

Sin cos x=0

tg x=/Pi/2+kPI

ctg x=/kPI

arc sin x=<-1, 1>

arc cos x=<-1, 1>

arc tg x=R

arc ctg x=R