[2011] 15-16, UWM Weterynaria, Biofizyka, Sprawozdania


Agnieszka Łyko, Monika Machnikowska

Wydział Medycyny Weterynaryjnej

grupa 1, zespół 9

ĆWICZENIE 15/16

Temat: Pomiar współczynnika lepkości za pomocą wiskozymetru Ostwalda. Wyznaczanie bezwzględnego współczynnika lepkości metodą Stokesa.

Wstęp teoretyczny:

Oddziaływania van der Waalsa - oddziaływania międzycząsteczkowe uniwersalne o charakterze
elektrycznym.

Występują trzy rodzaje sił:

dipolowe (orientacyjne)

występują w cząsteczkach posiadających trwały moment dipolowy

indukcyjne

występują, gdy tylko jedna cząsteczka ma charakter dipolowy

dyspersyjne

najbardziej uniwersalne w cząsteczkach

Zjawisko lepkości - zjawisko tarcia wewnętrznego. Zjawisko to jest związane z powstawaniem sił tarcia
między warstwami cieczy lub gazu przemieszczającymi się równolegle z prędkościami
różnymi co do wielkości - ruch laminarny.

Warstwa poruszająca sie szybciej przyspiesza warstwę poruszającą sie wolniej
i odwrotnie.

Zjawisko tarcia wewnętrznego opisuje prawo Newtona:

0x01 graphic

gdzie:

F to siła tarcia wewnętrznego działająca na pole powierzchni S warstwy cieczy

0x01 graphic
zmiana prędkości ruchu warstw na jednostkę długości w kierunku wewnętrznej normalnej do
powierzchni warstwy. Jest to tzw. spadek prędkości

Przepływ laminarny - stacjonarny występuje, gdy w określonym punkcie przestrzeni prędkość V
przepływu płynu jest stała, niezależna od czasu. Gdy wszystkie cząsteczki płynu
poruszają się po torach równoległych do siebie wtedy ruch płynu sprowadza sie do
przesuwania się warstw płynu względem siebie. Przepływ laminarny ma charakter
najprostszy.

Przepływ turbulentny, czyli burzliwy - po przekroczeniu pewnej prędkości granicznej, zależnej od rodzaju
płynu i rodzaju przewodu przepływ laminarny przekształca się w turbulentny:
cząsteczki wykonują ruchu nieuporządkowane o różnych kierunkach prędkości.
Takiemu zachowaniu się cząsteczek towarzyszy powstanie w płynie nieregularnych
linii prądu i powstawanie wirów.

Równanie ciągłości strugi jest oparte na bilansie masy, zakłada, że ilość masy cieczy dopływającej
i odpływającej jest równa:

0x01 graphic

gdzie:

0x01 graphic
0x01 graphic
gęstość

V- prędkość przepływu płynu

A- pole przekroju poprzecznego rurociągu

Prawo Bernouillego - suma energii kinetycznej, potencjalnej i ciśnienia jednostki masy (lub objętości)
ustalonego przepływu cieczy doskonałej jest wielkością stałą:

0x01 graphic

Współczynniki lepkości :

Współczynnik tarcia wewnętrznego równa się liczbowo sile tarcia wewnętrznego przyłożonej do jednostki
powierzchni warstwy płynącej cieczy przy jednostkowym spadku
prędkości:

0x08 graphic
0x08 graphic

Kinematyczny współczynnik lepkości v to stosunek dynamicznego współczynnika lepkości do gęstości cieczy:

0x01 graphic

Względny współczynnik lepkości określa się jako iloraz dynamicznego współczynnika lepkości
i współczynnika lepkości cieczy porównawczej.

0x01 graphic

Właściwy współczynnik lepkości:

0x01 graphic

Metody wyznaczania współczynników lepkości:

Pomiaru dokonujemy wiskozymetrem Ostwalda opierając się na prawie Poiseuille'a przekształconego tak, aby uzyskać wyrażenie na objętość cieczy przepływającej przez kapilarę:

0x01 graphic

Mierzymy czas przepływu to i t jednakowych objętości cieczy wzorcowej np wody i badanej cieczy.

Dla obu cieczy napiszemy:

0x01 graphic

uwzględniając, że 0x01 graphic

0x01 graphic

0x01 graphic
gęstość cieczy i wody

g - przyspieszenie ziemskie

h - różnica poziomów cieczy w zbiornikach Z1 i Z2, jednakowa w przypadku obu cieczy

Po przekształceniu wzoru otrzymamy wyrażenie na względny współczynnik lepkości:

0x01 graphic

Prawo Stokesa - prawo określające siłę oporu ciała w kształcie kuli, poruszającego się w płynie (cieczy lub
gazie) Prawo wyraża się wzorem

0x01 graphic

F- siła oporu

0x01 graphic
-lepkość dynamiczna płynu

r- promień kuli

v- prędkość ciała względem płynu

Współczynnik lepkości w przypadku cieczy ma wartość niezależną od warunków przepływu, zależy jedynie od temperatury i rodzaju cieczy.

Ciecze takie nazywamy Newtonowskimi, charakteryzują sie one liniową zależnością natężenia przepływu I od różnicy ciśnień delta p opisane prawem Poiseuille'a:

0x01 graphic

gdzie:

I - natężenie przepływu, czyli objętość cieczy wypływającej w jednostce czasu

p1-p2 różnica ciśnień na końcach przewodu o długości 0x01 graphic

R - promień kapilary

t - czas przepływu cieczy o objętości v

Ciecze nienewtonowskie to ciecze, których opór płynięcia dla określonego ciśnienia i temperatury, zmienia
się w zależności od szeregu parametrów, m.in. gradientu prędkości, kierunku płynięcia, a także rodzaju procesów jakim płyn był poddawany wcześniej.

Równanie Poiseuille'a - przekształcone tak, aby uzyskać wyrażenie na objętość cieczy przepływającej
przez kapilarę:

0x01 graphic

Lepkość krwi - krew tylko w pewnym przybliżeniu można traktować za ciecz newtonowska.

Lepkość krwi zależy od:

- hamatokrytu,

- temperatury,

- przekroju naczynia, w którym płynie,

- szybkości przepływu.

Przy wzroście hematokrytu powyżej 60% lepkość krwi znacznie wzrasta. Wiąże się to z dużym zagęszczeniem krwinek tworzących często kolumny dysków.

Lepkość zwiększa się z obniżeniem temperatury.

Lepkość krwi zależy również od akumulacji osiowej krwinek- krwinki unikają ścian naczyń.

Lepkość krwi w przewodach o średnicy większej od 0.3mm nie zależy od powierzchni przekroju naczynia. Natomiast dla średnic mniejszych zmniejsza się w miarę jak zmniejsza się przekrój.

W przewodach cienkich większego znaczenia nabiera niejednorodność krwi i związana z nią nieciągła struktura cieczy.

Całkowity opór obwodowy, całkowity obwodowy opór naczyniowy - termin medyczny używany w celu określenia całkowitego oporu przepływu krwi w naczyniach. Jest sumą poszczególnych oporów obwodowych.

Opór obwodowy (R) można wyliczyć ze wzoru

0x01 graphic

gdzie: P jest różnicą ciśnień pomiędzy początkiem a końcem badanego odcinka, a Q to przepływ przez naczynia.

Dla krążenia systemowego całkowity opór obwodowy będzie to stosunek pomiędzy różnicą średniego ciśnienia aortalnego (średnio 100 mm Hg) i ciśnienia w prawym przedsionku (średnio 0 mm Hg),
a pojemnością minutową serca (średnio 5 l/min), czyli

0x01 graphic

Całkowity opór naczyniowy w krążeniu płucnym jest średnio 10 razy mniejszy od oporu w krążeniu systemowym.

Jednostką oporu przepływu jest PRU (Peripheral Resisitance Unit), czyli taki opór, przy którym ciśnienie napędowe 1 mm Hg wystarczy do przesunięcia przez badany odcinek 1 ml krwi w ciągu 1 min. |
w przeliczeniu na 100 g tkanki przez którą odbywa się przepływ.

0x01 graphic

Nr pomiaru

tw

twśr

tc

tcśr

ηwz

η

v

s

s

s

s

Ns/m2

m2/s

Nr pomiaru

r

t

L

v

η

ηśr

m

s

m

m/s

1



Wyszukiwarka

Podobne podstrony:
15.16, UWM Weterynaria, Biofizyka - ćwiczenia
[2011] M5, UWM Weterynaria, Biofizyka, Sprawozdania
[2011] M5, UWM Weterynaria, Biofizyka, Sprawozdania
1516pp, UWM Weterynaria, Biofizyka, Sprawozdania
biofizyka egzamin 2010-2011, UWM Weterynaria, Biofizyka
M1, UWM Weterynaria, Biofizyka - ćwiczenia
BIOFIZYKA - egzamin 1, UWM Weterynaria, Biofizyka
Ćw.68, UWM Weterynaria, Biofizyka - ćwiczenia
22a, WETERYNARIA, Biofizyka, Sprawozdania, M10
M3, UWM Weterynaria, Biofizyka - ćwiczenia
212 20- 20Wyznaczanie 20ciep B3a 20topnienia 20lodu 20za 20pomoc B9 20kalorymetru, WETERYNARIA, Biof
M10, UWM Weterynaria, Biofizyka - ćwiczenia
18.27, UWM Weterynaria, Biofizyka - ćwiczenia
Biofizyka pytania, UWM Weterynaria, Biofizyka
Metody GSA 2011 15 16 12 13
Metody GSA 2011 15 16 12 13
Lab 13 14 15 16 Multimedia Klasa 4 2011 2012 Lista4, Informatyka, Technikum, Grafika

więcej podobnych podstron