Charakterystyki geometryczne poszczególnych figur:
Figura nr1
h =8 cm ; b = 6 cm
A1 =
∙ b∙h
A1 =
∙ 6∙8 = 24 cm2
Ix1 =
=
= 85,3 cm4
Iy1 =
=
= 48 cm4
Dx1y1 =
= -32 cm4
ex= 4cm ; ey= 5,4 cm
Figura nr2
h =8 cm ; b = 6 cm
A2 =
∙ b∙h
A2 =
∙ 6∙8 = 24 cm2
Ix2 =
=
= 85,3 cm4
Iy2 =
=
= 48 cm4
Dx2y 2=
= 32 cm4
ex=4 cm ; ey= 2,6 cm
Figura nr3
skala 1:2
b = 2 cm ; h = 14 cm
A3 = b∙h
A3 = 2∙14 = 28 cm2
Ix3 =
=
= 457,3 cm4
Iy3 =
=
= 9,3 cm4
Dx3y 3 = 0
ex=1 cm ; ey= 7 cm
Figura nr4
skala 1:2 b = 14 cm ; h = 14 cm
A4 =
∙ b∙h
A4 =
∙14∙14= 98 cm2
Ix4 =
=
= 1067,1 cm4
Iy4 =
=
= 1067,1 cm4
Dx4y 4=
=
= 533,5cm4
ex = 14∙
= 4,6 cm
ey = 14 - 4,6 = 9,4 cm
Figura nr5
r = 2 cm
A5 =
=
= 3,14 cm2
Ix5 = Iy5 = 0,05488∙r2
Ix5 = Iy5 = 0,05488∙4 = 0,87808 cm4
ex = ey = 0,4244∙r
ex = ey = 0,4244∙2 = 0,8488 cm
Dx5y 5 = 0,01647∙r4
Dx5y 5 = 0,01647∙16 = 0,26352 cm4
Figura nr6
skala 1:2
b= 8,2 cm ; h= 18 cm
A6 = 27,9 cm2
I'x6 = 1450 cm4
I'y6 = 81,3 cm4
D'x6y6 = 0
ex= 4,1 cm ; ey= 9 cm
Ix6 =
+
∙ cos2α - D'x6y6∙sin2α α = 45°;cos2α = 90° ;cos90°= 0
Ix6 =
0 - 0 = 765,65 cm4 sin90°= 1
Iy6 =
-
∙ cos2α + D'x6y6∙sin2α
Iy6 =
0 + 0 = 765,65 cm4
Dx6y6 =
∙sin2α + D'x6y6 cos2α
Dx6y6 =
1 + 0 = 684,35 cm4
Obliczenie sumy wszystkich pól powierzchni:
= A1+A2+A3+A4+A5+A6
= 24 + 24 + 28 + 98 + 3,14 + 27,9 =205,04 cm2
Współrzędne środków ciężkości figur:
x1= 6-2 =4 cm y1=0,9+8-2,6 = 6,3 cm
x2= 6-2 =4 cm y2=0,9+8+2,6=11,5 cm
x3= 6+1=7 cm y3=0,9+2+7=9,9 cm
x4= 6+2+4,6 = 12,6 cm y4=0,9+2+(14-4,6)=12,3 cm
x5= 6 +0,8488 = 6,85 cm y5=0,9+(2-0,8488)=2,05 cm
x6= 6+2+2,9+6,3639 = 17,26 cm y6=6,3639 cm
Obliczenie współrzędnych środka ciężkości:
xs=
xs= ( 4∙24 + 4 ∙24 + 7∙28 + 12,6∙98 + 6,85∙3,14 + 17,6∙27,9):205,04
xs= 10,37 cm
ys=
ys=( 6,3∙24 + 11,5∙24 + 9,9∙28 + 12,3∙98 + 2,05∙3,14 + 6,36∙27,9):205,04
ys= 10,21 cm
nr. |
A [cm2] |
xi [cm] |
yi [cm] |
xiAi [cm3] |
yiAi [cm3] |
1 |
24 |
4 |
6,3 |
96 |
151,2 |
2 |
24 |
4 |
11,5 |
96 |
276 |
3 |
28 |
7 |
9,9 |
196 |
277,2 |
4 |
98 |
12,6 |
12,3 |
1234,8 |
1205,4 |
5 |
3,14 |
6,85 |
2,05 |
21,509 |
6,437 |
6 |
27,9 |
17,26 |
6,3639 |
481,554 |
177,55 |
|
205,04 |
51,71 |
48,41 |
2125,863 |
2093,787 |
Obliczenie momentów bezwładności i momentów dewiacji
Ix= Σ ( Ixi + yi2Ai )
Iy= Σ ( Iyi + xi2Ai )
Dxy= Σ( Dxiyi + xiyiAi )
Figura nr 1:
xi = x1 - xs = 4 - 10,37 = -6,37 cm
yi = y1 - ys = 6,3 - 10,21 = -3,91 cm
Figura nr 2:
xi = x2 - xs = 4 - 10,37 = -6,37 cm
yi = y2 - ys = 11,5 - 10,37 = 1,29 cm
Figura nr 3:
xi = x3 - xs = 7 - 10,37 = -3,37 cm
yi = y3 - ys = 9,9 - 10,21 = -0,31 cm
Figura nr 4:
xi = x4 - xs = 12,6 - 10,37 = 2,23 cm
yi = y4 - ys = 12,3 - 10,37 = 2,09 cm
Figura nr 5:
xi = x5 - xs = 6,85 - 10,37 = -3,52 cm
yi = y5 - ys = 2,05 - 10,21 = -8,16 cm
Figura nr 6:
xi = x6 - xs = 17,26 - 10,37 = 6,89 cm
yi = y6 - ys = 6,3639 - 10,21 = -3,85 cm
nr |
Ai [cm2] |
xi [cm] |
yi [cm] |
Ixi [cm4] |
Iyi [cm4] |
Dxiyi [cm4] |
xi2Ai [cm4] |
yi2Ai [cm4] |
xiyiAi [cm4] |
1 |
24 |
-6,37 |
-3,91 |
85,3 |
48 |
-32 |
973,8456 |
366,9144 |
597,7608 |
2 |
24 |
-6,37 |
1,29 |
85,3 |
48 |
32 |
973,8456 |
39,9384 |
-197,2152 |
3 |
28 |
-3,37 |
-0,31 |
457,3 |
9,3 |
0 |
317,9932 |
2,6908 |
29,2516 |
4 |
98 |
2,23 |
2,09 |
1067,1 |
1067,1 |
533,5 |
487,3442 |
428,0738 |
456,7486 |
5 |
3,14 |
-3,52 |
-8,16 |
0,878 |
0,878 |
0,2635 |
38,9058 |
209,0787 |
90,1908 |
6 |
27,9 |
6,89 |
-3,85 |
765,65 |
765,65 |
684,35 |
1324,4715 |
413,5477 |
-740,0893 |
Σ |
205,04 |
-10,51 |
-12,85 |
2461,528 |
1938,928 |
1218,1135 |
4116,4059 |
1460,2438 |
236,6473 |
Ix=
+
= 2461,528 + 1460,2438 = 3921,7718 cm4
Iy=
+
= 1938,928 + 4116,4059 = 6055,3339 cm4
Dxy=
+
= 1218,1135 + 236,6473 = 1454,7608 cm4
Położenie głównych centralnych osi bezwładności
tg 2α gł. =
=
=
= 1,3636
2α gł. = 53°44'
α gł. = 26°52'
Główne centralne momenty bezwładności:
II = Imax =
II =
II =
cm4
III = Imin =
III = Imin =
III = Imin =
cm4
Sprawdzenie:
Ix +Iy = II + III
3921,7718 + 6055,3339 = 6792,534777 + 3184,570923
9977,1057 = 9977,1057