Elektrownie jądrowe, Mechatronika


Autor: Krzysztof Janeczek

Zasada działania elektrowni jądrowych.

WSTĘP:

Energia jest obecnie bardzo potrzebna ludzkości. Przez wieki zastanawiano się jakie sposoby i środki byłyby najlepsze do jej uzyskiwania.
Pierwszym podstawowym źródłem energii był ogień. Niestety w dobie rozwoju i postępu nie był on już wystarczający. Pojawiły się nowe sposoby otrzymywania coraz to większych pokładów energetycznych. Zaczęto wykorzystywać węgiel oraz ropę naftową. Niestety są to zasoby nieodnawialne i na pewno kiedyś się skończą, dlatego też należy je oszczędzać i szukać coraz to lepszych środków do wytwarzania energii. Poza tym spalanie paliw kopalnych powoduje efekt cieplarniany oraz zanieczyszczenia związkami siarki, azotu i pyłami. Odkrycie w 1896 roku przez Henryka Becquerela promieniotwórczości było pierwszym krokiem w rozwoju energetyki jądrowej. Rozszczepienie jądra uranu w 1938 roku przez niemieckich fizyków atomowych Otto Hahna i Fritza Strassmanna stało się podstawą narodzenia się w 1939 roku idei reakcji łańcuchowej rozszczepiania, a następnie zamysłu przeprowadzenia owej reakcji w sposób kontrolowany, czyli reakcji jądrowej.
Prace podjęte w USA w ramach tzw. Projektu Manhattan przewidywały w pierwszym etapie stworzenie reaktora jądrowego. Doszło do tego pod kierownictwem włoskiego emigranta, fizyka atomowego Enrico Fermiego- w 1942 roku uruchomiono w Stagg Field pod Chicago pierwszy reaktor jądrowy. Zasadniczą część owego reaktora jądrowego stanowił blok grafitowy, w którym znajdowały się pręty uranowe i kadmowe. Uran był materiałem rozszczepialnym, czyli paliwem jądrowym, grafit pełnił rolę moderatora (spowalniacza) zmniejszającego prędkość neutronów do najbardziej skutecznej dla przebiegu reakcji, rola kadmu zaś polegała na pochłanianiu neutronów, aby ich liczba nie wzrosła do poziomu grożącego eksplozją. Oczywiście reaktor jądrowy miał odpowiednią osłonę, nie przepuszczającą promieniowania na zewnątrz, a czynnikiem chłodzącym była woda.
Na podobnej zasadzie pracują reaktory jądrowe rozmaitych typów, w których używa się różne substancje jako moderatory, pochłaniacze i czynniki chłodzące, a jako paliwo jądrowe obok uranu także pluton.
Po II wojnie światowej zajęto się problemem praktycznego wykorzystania reakcji jądrowej do zadań pokojowych. Pierwsze udane próby wytwarzania prądu elektrycznego przy użyciu reaktora jądrowego przeprowadzono w Arco w stanie Idaho (USA) w 1951 roku. Energię jądrową, która powstaje w wyniku naturalnego rozpadu promieniotwórczego pierwiastka można wykorzystać również do celów medycznych. Obecnie wiele koniecznych i nieodzownych badań nie mogło by się bez niej odbyć.


ELEKTROWNIE JĄDROWE:

W elektrowni jądrowej energię uzyskujemy nie ze spalania paliw kopalnych, lecz z rozszczepiania jąder atomowych. Kocioł zostaje tu zastąpiony reaktorem jądrowym, czyli urządzeniem, w którym wytwarzana jest energia jądrowa. Obecnie elektrownie jądrowe produkują ponad 20% całkowitej światowej energii elektrycznej.

KRÓTKI OPIS ELEKTROWNI JĄDROWEJ (budowa):
1. Obudowa bezpieczeństwa jest podstawowym elementem konstrukcyjnym zapobiegającym uwolnieniu radioaktywnych gazów do atmosfery. Stanowi ona szczelną powłokę, zawierającą w sobie reaktor i jego układ chłodzenia, obliczoną na maksymalne ciśnienie awaryjne.
2. Budynek maszynowni znajduje się w nim turbina, generator i transformator.
3. Chłodnia kominowa, pozostała ilość ciepła niewykorzystana przy produkcji energii jądrowej zostają odprowadzana W tym celu para, po oddaniu użytecznej energii i wykonaniu pracy w turbinie, jest kierowana do skraplacza. Tam jest ona przy pomocy wody chodzącej kondensowana i ponownie jako woda zasilająca kierowana do obiegu.
4. Basen wypalonego paliwa
5. Reaktor to właściwe urządzenie służące do wytwarzania kontrolowanej reakcji łańcuchowej, tj. ciągłego pozyskiwania energii z rozszczepiania jąder atomowych.
6. Turbina służąca to przetwarzania energii jądrowej w mechaniczną.
7. Zbiornik wody zasilającej
8. Rurociągi wody chłodzącej
9. Generator - wytworzona w turbinie energia mechaniczna jest przez ten wał przenoszona do generatora. Poprzez szybki obrót przymocowanego na wale elektromagnesu wytwarzany jest w uzwojeniu generatora prąd i tym samym energia mechaniczna turbiny jest przemieniana w energię elektryczną.
10. Transformator - wytworzona w generatorze energia elektryczna musi zostać przetworzona, tak aby była możliwość jej transportu. Musi ona jako prąd elektryczny dotrzeć do użytkownika. Staje się to poprzez podwyższenie napięcia w transformatorze przy elektrownii.

0x01 graphic

ZASADA DZIAŁANIA ELEKTROWNI JĄDROWEJ: W 1913 r. wielki duński fizyk Niels Bhor opublikował swój słynny model atomu wodoru ,który jeszcze dziś jest bardzo bliski rzeczywistości. Jądro atomu jest naładowane elektrycznie dodatnio, elektrony zaś ujemnie. Są one utrzymywane na swych torach siłami elektrostatycznego przyciągania jądra, podobnie jak planety związane są ze Słońcem siłami grawitacyjnymi. Jak małe są jądra atomowe ilustruje następujący przykład. Kropla wody składa się z ok. 6 x 1021 czyli 6 000 000 000 000 000 000 000 atomów. Choć atom jest mały, to jego jądro jest jeszcze znacznie mniejsze. Wypełnia ono zaledwie 1/1 000 000 000 000 objętości atomu. Gdyby jądro atomu było wielkości wiśni i leżało na środku stadionu piłkarskiego, wtedy tory elektronów przebiegałyby w górnych rejonach widowni. Choć jądro zajmuje zaledwie bilionową część objętości atomu, to jest w nim skoncentrowana prawie cała jego masa. Materia jądrowa jest niesłychanie mocno zagęszczona. Gdyby stworzyć opisane wyżej jądro wielkości wiśni, ważyłoby ono ok. 30 milionów ton i oczywiście nie pozostałoby na boisku lecz zagłębiłoby się w ziemię. Jądra atomowe składają się z dwóch rodzajów cząstek - protonów i neutronów. Obydwie cząstki mają prawie równe masy i są około 2000 razy cięższe od elektronów. Proton posiada ładunek dodatni równy liczbowo ujemnemu ładunkowi elektronu, neutron - zgodnie z nazwą - jest neutralny, czyli pozbawiony ładunku elektrycznego. Wartość ładunku elektrycznego protonu czy elektronu nazywamy ładunkiem elementarnym. Protony i neutrony są często określane wspólną nazwą nukleonów i same składają się z jeszcze drobniejszych cząstek, zwanych kwarkami.

IZOTOPY: Wszystkie atomy tego samego pierwiastka mają taką samą liczbę protonów i elektronów, mogą jednak różnić się między sobą liczbą neutronów. Najlżejszy najprostszy pierwiastek- wodór istnieje w trzech różnych odmianach, z O, 1 lub 2 neutronami w jądrach. Normalny wodór ma w jądrze jeden proton i ani jednego neutronu. Inny rodzaj wodoru, deuter, ma w jądrze proton i neutron, a jądro trylu zawiera prócz charakterystycznego dla wodoru pojedynczego protonu aż dwa neutrony. Powyższe trzy odmiany wodoru nazywamy izotopami pierwiastka wodoru. Ogólnie określa się atomy pierwiastka o identycznej liczbie protonów, ale różnej liczbie neutronów, jako izotopy danego pierwiastka. Dla przykładu uran występuje w przyrodzie w odmianach, które zawierają 234, 235 lub 238 nukleonów. Wiemy już, że wszystkie jądra uranu mają 92 protony. Stąd trzy izotopy uranu mają odpowiednio 142 (234-92), 143 i 146 neutronów w swoich jądrach atomowych. Oznaczamy je jako U-234, U-235 i U-238. Sumaryczna ilość nukleonów danego izotopu nazywana jest często liczbą masową, zaś liczba protonów - liczbą porządkową. U-235 ma więc liczbę masową 235 oraz liczbę porządkową 92, izotop wodoru deuter ma liczbę masową 2 i liczbę porządkową 1.

ROZPADANIE JĄDRA ATOMU: Jądra atomowe, szczególnie te bardzo duże i ciężkie, są często nietrwałe i rozpadają się, podobnie jak rozpadłaby się duża budowla, której ściany nośne byłyby zbyt wątłe. Jądro radu może np. wyrzucić z siebie cząstkę złożoną z dwóch protonów i dwóch neutronów, zwaną cząstką alfa. Po akcie emisji w jądrze brak teraz dwóch protonów, nie jest to więc już jądro radu. Przemieniło się ono w jądro innego pierwiastka, w tym przypadku w jądro radonu. Inne jądra rozpadają się przez wyrzucenie z siebie elektronu, czyli cząstki beta. Cząstka ta powstaje z przemiany neutronu w proton oraz elektron, który następnie zostaje wyemitowany z jądra. Jądro zawiera teraz o jeden proton więcej. Jądro powstałe po przemianie najczęściej też nie jest trwałe i rozpada się dalej. W ten sposób powstają szeregi promieniotwórcze, kończące się ostatecznie pierwiastkiem trwałym. Uran przykładowo po 13 przemianach pośrednich przekształca się w ołów.

ROZSZCZEPIANIE JĄDRA ATOMU URANU: Naturalny uran zawiera trzy izotopy U-234, U-235 i U-238. Z każdego 1000 atomów uranu 993 ma jądra U-238, 7 zaś jądra U-235. Izotopu U-234 ze względu na znikomą zawartość w naturalnym uranie możemy w ogóle nie brać pod uwagę. Powolne neutrony rozszczepiają jedynie jądra U-235. W wyniku tego powstaje najpierw jądro przejściowe U-236. Nie jest ono jednak trwałe i rozpada się na kilka fragmentów, np. jądro baru-144, jądro kryptonu-90 oraz dwa nowe neutrony, l tu dochodzimy do odkrycia, które poprzez bomby atomowe i reaktory jądrowe odmieniło świat: powstałe podczas rozszczepienia odłamki mają mniejszą masę niż ostrzeliwane jądro wraz z pociskiem. Stwierdzamy więc ubytek masy, który zgodnie ze wzorem Einsteina E = mc2 odnajduje się w postaci potężnej porcji energii, tzw. energii jądrowej. Można też tak powiedzieć, że energia wiązania, która zespalała duże jądro, została częściowo uwolniona i umożliwiła teraz częściom rozpadu poruszać się z olbrzymią prędkością. Zderzenia z częściami rozpadu wywołują intensywne drgania sąsiednich atomów. W taki to sposób energia ruchu produktów rozpadu zamienia się w ciepło. Podsumujmy. Podczas rozszczepiania jąder uwalniana jest duża ilość energii. Z jednego grama U-235 można uzyskać 23 000 kWh. Często wynikiem rozszczepienia jądra jest pojawienie się trzech nowych neutronów. Przejściowe jądro U-236 może się rozpaść na jądro baru-144, jądro kryptonu-89 oraz trzy neutrony. Nowo powstałe, lżejsze jądra atomowe z zasady same są radioaktywne i wysyłają niebezpieczne promieniowanie. Natkniemy się na nie ponownie przy omawianiu podstawowego problemu elektrowni jądrowych, jakim jest usuwanie odpadów radioaktywnych. Aby rozszczepić jądro U-238, powinniśmy dysponować neutronami bardzo prędkimi. Powolne wnikają wprawdzie do tego jądra, ale zostają tam pochłonięte tworząc U-239. Ten ostatni podczas stanu przejściowego przemienia się w pluton-239, który już może być rozszczepiany powolnymi neutronami.

OPIS REAKCJI ŁAŃCUCHOWEJ ZACHODZACEJ W REAKTOŻE. W dużej bryle U-235 lub plutonu po krótkim ostrzale neutronami odbyłby się następujący proces. Gdzieś w dowolnym miejscu następuje rozszczepienie pierwszego jądra. Wyrzuca ono z siebie 2 lub 3 neutrony. Niech te neutrony w moim przykładzie rozbijają 2 dalsze jądra, z których przeciętnie uwolni się 5 neutronów. Jeśli cztery z nich trafią na jądra sąsiadów i je rozszczepią, wytworzy się 8 do 12 nowych neutronów. Te ostatnie - uwzględniając nawet pewne straty - rozbijają dalsze jądra, przy czym każdorazowo wydzielana jest olbrzymia energia. Gdy w kolejnym etapie powstanie okrągło 20 nowych neutronów, a te także trafią w jądra, to widać, że w ułamku sekundy liczba rozbitych jąder, a tym samym ilość wydzielanej energii, będzie wzrastać lawinowo. Proces ten nazywamy reakcją łańcuchową. Przedstawiona tu niekontrolowana reakcja łańcuchowa znajduje zastosowanie w bombie atomowej. Dla jej zapoczątkowania konieczna jest określona minimalna masa paliwa jądrowego, zwana masą krytyczną. Dla uranu-235 wynosi ona ok. 23 kg, co odpowiada kuli o średnicy 13 cm. Gdy ilość paliwa jądrowego jest mniejsza od masy krytycznej, tracimy zbyt wiele neutronów, które opuszczą bryłę uranu, nim zdążą trafić na jakieś jądro. Na szczęście reakcja łańcuchowa może przebiegać także w sposób kontrolowany, gdy dopuszczamy jedynie określoną ilość rozszczepień na sekundę. Tak właśnie dzieje się w reaktorach jądrowych.

BUDOWA OGNIWA PALIWOWEGO. Pręty paliwowe elektrowni jądrowych zawierają pastylki wykonane z dwutlenku uranu (UO2). Ten ostatni uzyskujemy ze wzbogaconego gazu UF6 i prasując nadajemy mu postać pastylek o grubości ok. 1,5 cm i średnicy ok. 1 cm. Podane tu wymiary - jak prawie wszystkie dane liczbowe - mogą być inne dla różnych elektrowni, a także w różnych państwach nieco się różnić, stanowią jednak typowe wartości przeciętne. Surowe wypraski ogrzewa się do 1700°C, co daje im konieczną spoistość i wytrzymałość. Następnie poddaje się je obróbce mechanicznej z dokładnością do 1/10000 mm i wprowadza w rurki, zwane koszulkami. Dla lepszej wymiany ciepła w koszulki wprowadza się hel. Koszulki ponadto nigdy nie są całkowicie wypełnione pastylkami, gdyż w wyniku rozpadu promieniotwórczego powstają gazy wymagające odpowiedniej przestrzeni, tzw. przestrzeni gazu po rozpadowego. Wypełnione i szczelnie zamknięte koszulki stanowią pręty paliwowe; wraz z prętami regulacyjnymi tworzą one elementy paliwowe, których konstrukcja może być bardzo różna, l tak w reaktorze wrzącym znajdujemy często 7x7 prętów paliwowych w wiązce paliwowej, w reaktorze wodnym ciśnieniowym 15x15 lub 20 x 20. Także położenie prętów regulacyjnych może się w różnych reaktorach zasadniczo zmieniać.

RODZAJE STOSOWANYCH REAKTORÓW I KRÓTKI OPIS.

REAKTOR WODNY WRZĄCY. W reaktorze wodnym wrzącym zamieniamy wodę w parę za pomocą energii jądrowej. Następuje to w zbiorniku ciśnieniowym reaktora. Para pod ciśnieniem około 7MPa napędza turbinę, która dostarcza generatorowi energii potrzebną do wytworzenia prądu. We wspomnianym zbiorniku ciśnieniowym reaktora, który w omawianym przykładzie posiada ścianki o grubości 16 cm, znajduje się rdzeń reaktora, przez który przepływa woda doprowadzana do wrzenia. Rdzeń reaktora składa się z około 800 elementów paliwowych. Każdy element paliwowy znajduje się w blaszanym pojemniku, do którego woda dostaje się przez otwór w spodzie. Woda wypełnia pojemnik i styka się z 64 prętami paliwowymi, czyli prętami wykonanymi np. z rozszczepialnego uranu. Pręty składają się zazwyczaj ze wzbogaconego uranu w postaci dwutlenku uranu (UO2). Podczas rozszczepiania jąder uranu wydziela się duża ilość energii, którą w formie ciepła odbiera woda chłodząca (chłodziwo). Woda służy też jednocześnie jako moderator (hamuje więc do tego stopnia prędkie neutrony, powstałe podczas każdego rozszczepienia jądra, że same mogą powodować dalsze rozszczepienia). Gdyby wszystkie powstałe w tej reakcji neutrony przyczyniały się do dalszego rozszczepiania, reaktor wyszedłby spod kontroli i wytwarzałby za dużo energii - stałby się wybuchającą bombą atomową. Aby temu zapobiec, każdy reaktor zawiera takie materiały, jak bor lub kadm, które absorbują (pochłaniają) neutrony, w takim stopniu, aby reakcja nie wymknęła się spod kontroli, ale też by nie "zgasła". Neutrony pochłaniane są przez wspomniane materiały, które tworzą pręty sterujące, które są wsuwane do reaktora mniej lub bardziej głęboko - w zależności od potrzeb. Bardziej wysunięte to mniejsze pochłanianie i większa ilość rozszczepień. Mniej wysunięte to spowolniona reakcja. Wsuwaniem i wysuwaniem prętów łatwo można kontrolować reakcję, a w razie potrzeby zadusić. Pręty, ze względu na znaczną szybkość reakcji jądrowych i konieczność jeszcze szybszego reagowania, posiadają sterowanie automatyczne. Podczas pierwszego uruchomienia reaktora trzeba dostarczyć neutronów z zewnętrznego źródła. Po chwilowym zatrzymaniu reakcji nie jest to konieczne. Elementy paliwowe dostarczają wtedy dostatecznej ilości neuronów, aby uruchomić reakcję jądrową przez wysunięcie prętów sterujących.

REAKTOR WODNY CIŚNIENIOWY. W reaktorze wodnym ciśnieniowym woda stykająca się z rdzeniem reaktora nie gotuje się. Uniemożliwia jej to ogromne ciśnienie - rzędu 15 MPa. Woda ta krąży w obiegu pierwotnym i w odpowiedniej wytwornicy pary ogrzewa wodę obiegu wtórnego, a zatem nie styka się z nią bezpośrednio. Woda obiegu pierwotnego schładza się przy tym z 330C do 290C. Podczas gdy woda obiegu wtórnego wrze i wytworzoną parą napędza turbinę i generator, to woda obiegu pierwotnego, ciągle w stanie ciekłym, jest pompowana do rdzenia, gdzie ponownie ogrzewa się do 330C. Odpowiedni regulator ciśnienia zapewni stałe ciśnienie tej wody. Typowy reaktor wodny ciśnieniowy o mocy 1300 MW ma rdzeń zawierający około 200 elementów paliwowych po 300 prętów paliwowych każdy. Sterowanie reaktorem odbywa się z jednej strony przez zmianę stężenia roztworu boru (pochłaniającego neutrony) w wodzie obiegu pierwotnego, z drugiej strony zaś przez pręty regulacyjne, zawierające kadm, które, jak już poprzednio jest wspomniane, można wsuwać i wysuwać. Woda także jest tu spowalniaczem. Gdy reaktor nadmiernie się nagrzewa, to gęstość wody maleje. Tym samym prędkie neutrony są słabiej wyhamowywane, liczba rozszczepień dostarczających energii maleje i cały układ się ochładza. Reaktor taki, podobnie jak i wrzący, nosi nazwę lekkiego ponieważ stosuje się w nim "zwykłą" wodę, a nie "ciężką".

REAKTOR POWIELAJĄCY.

Jądra U-238 mogą wchłaniać neutrony, przemieniając się przy tym w jądra plutonu, które można łatwo rozszczepić i wykorzystać do produkcji energii. Reaktor powielając wykorzystuje tą własność. Jako materiał rozszczepialny jest w nim stosowany Pu-239, który podczas rozpadu produkuje 2 lub 3 neutrony. Jeden z nich jest potrzebny do podtrzymania reakcji łańcuchowej, podczas gdy pozostałe są przekazywane do jąder U-238, które przemieniają się w Pu-239. Tak powstaje nowe paliwo. Reaktor wytwarza w ten sposób nowe paliwo. W optymalnym przypadku może wytworzyć nawet więcej paliwa niż sam zużył. Ten proces zachodzi także w innych typach reaktorów, ale w marginalnych ilościach. Zasoby U-238 są znaczne, więc powszechnie uważa się, że w przyszłości takie reaktory odegrają duża role w wytwarzaniu energii. Technika ta, dzięki wykorzystywaniu nie rozszczepialnego U-238, jest sześćdziesięciokrotnie bardziej wydajna od tradycyjnej uranowej. Przemiana U-238 w Pu przebiega lepiej z neutronami prędkimi niż wolnymi. W reaktorze prędkim powielającym wykorzystuje się właśnie te prędkie neutrony do procesu powielania. Przy małej zawartości plutonu proces przebiegałby ze zbyt małą wydajnością, stąd w owych reakcjach elementy paliwowe zajmują 20-30% plutonu i 70-80 % U-238. Jest prawie 10-krotnie więcej materiału rozszczepialnego niż we wcześniejszych typach reaktorów, więc istnieje wiele niebezpieczeństw i trudności technicznych związanych z budową i eksploatacją takich siłowni. Reaktor składa się z elementów paliwowych, w których wytwarzana jest energia oraz z elementów powielających, gdzie powstaje nowe paliwo. Z powodu obecności dużej ilości materiału rozszczepialnego wytwarzanie ciepła w elementach paliwowych jest bardziej intensywne. Dlatego ochładza się taki reaktor ciekłym sodem, który dobrze przewodzi ciepło, ale w przeciwieństwie do wody słabo hamuje neutrony. Są więc one ciągle prędkie. Obieg pierwotny ciekłego sodu ogrzewa ciekły sód w obiegu wtórnym. Ten doprowadza do wrzenia, a wytworzona para napędza urządzenia produkujące prąd.

REAKTOR WYSOKOTĘPERATUROWY. Reaktor taki zużywa jako surowiec energetyczny obok uranu także tor-232, który w trakcie pracy reaktora pochłania neutrony i przemienia się z rozszczepialny U-233. Stosowane paliwo ma postać drobnych granulek, które następnie zasklepia się w kulach grafitowych wielkości piłki tenisowej. Grafit służy jako moderator hamujący neutrony. Wytworzone w reaktorze ciepło podgrzewa gaz - na przykład obojętny chemicznie hel - do około 900C. Gaz ten z kolei odparowuje wodę, która napędza turbinę. Reaktor taki posiada wysoką sprawność.

REAKTOR JEDNORODNY ZE SPOWALNIACZEM STAŁYM. Procesy reakcji jądrowych przeprowadza się w tzw. reaktorach jądrowych. Paliwem do reaktorów jądrowych są pręty, rury, blachy uranowe lub plutonowe (92233U, 92235U, 94239Pu). Paliwo jądrowe w takich reaktorach rozmieszczone jest w masie ciekłego (np. wody lub ciężkiej) wody lub stałego spowalniacza, tworząc rdzeń lub strefę aktywną reaktora. Gdy paliwo tworzy ze spowalniaczem niejednorodną masę, wtedy taki reaktor nazywamy niejednorodnym (heterogenicznym). Rdzeń otoczony jest warstwą materiału odbijającego neutrony - tzw. zwierciadłem lub neutronem. Jako zwierciadło może służyć grafit, woda, woda ciężka, BeO). Zadaniem zwierciadła jest zmniejszenie masy paliwa jądrowego do wartości mniejszej od masy krytycznej, która byłaby potrzebna w reaktorze bez zwierciadła. Osłona wykonana z betonu ma chronić obsługę przed szkodliwym promieniowaniem. Ciepło wytwarzane w reaktorze jest odprowadzane za pośrednictwem cieczy chłodzącej (ciało ogrzewane w reaktorze to chłodziwo). Aby zapobiec przedostawania się produktów rozszczepiania do chłodziwa pręty paliwowe są umieszczone w osłonie wykonanej z materiałów możliwie jak najmniej pochłaniającej neutrony (magnez, cyrkon i stopy). Chłodziwo oddaje ciepło w wymienniku ciepła innej łatwo wrzącej substancji. Chłodziwem może być woda, powietrze, dwutlenek węgla, oraz ciekłe metale (sód, rzadziej potas i ich stopy). Do pompowania ciekłych metali stosowane są pompy elektromagnetyczne, działające na zasadzie oddziaływania magnetycznego na ciekły metal, przez który płynie prąd elektryczny. Zaletą tych pomp jest to, że nie posiadają części ruchomych, podatnych na uszkodzenia. Do kierowania pracą reaktora służą pręty sterujące. Są one wykonane z metali o dużym przekroju czynnym ( silnie pochłaniające neutrony), np. kadmu, baru lub hafnu. Mogą być wsuwane do wnętrza reaktora lub wysuwane. Gdy pręty są wsunięte, to wówczas na wskutek silnego pochłaniania neutronów reakcja zostaje zahamowana. Im bardziej są wysunięte tym szybsza i gwałtowniejsza reakcja jądrowa. Reakcje jądrowe zachodzą bardzo szybko, więc potrzebna jest automatyczna regulacja wysunięcia prętów w zależności od liczby powstałych neutronów. W każdym reaktorze są kanały do wytwarzania izotopów promieniotwórczych. W reaktorach, których głównym zadaniem jest wytwarzanie energii jest to uboczny produkt, ale niektóre reaktory (np. polskie Świerk i Ewa), służą głównie do tego.

REAKTOR JEDNORODNY. W tym przypadku rdzeń reaktora jest wypełniony roztworem wodnym jakiegoś pierwiastka, będącego paliwem jądrowym, np. siarczanu uranylu UO2SO4, lub inną cieczą, a nawet proszkiem. Zaletami takiego reaktora uniknięcie trudnej i kosztownej produkcji prętów paliwowych i kłopotów związanych z wymianą prętów. We wszystkich tych reaktorach występują dwa obiegi, co ma chronić obsługę reaktora przed promieniowaniem: pierwotny-przechodzący przez reaktor i wtórny z turbiną parową.

SZKODLIWOŚĆ PROMIENIOTWÓRCZA:
DZIAŁANIE PROMIENIOTÓWRCZOŚCI NA LUDZI MIESZKAJĄCYCH W POBLIŻU ELEKTROWNI Ludzie mieszkający bardzo bliską reaktorów jądrowych są narażeni bardziej na szkodliwe działanie promieniowania niż te osoby które mieszkają w bezpieczniejszej odległości. Mimo to, owe promieniowanie nie jest aż tak silne. Jego dawki nie przekraczają kilku procent naturalnego tła promieniowania. Reaktory są bezpieczne jedynie wtedy, gdy działają bez żadnych zakłóceń i awarii. W innym przypadku ludzie mieszkający blisko reaktora mogą być narażeni na niekorzystne działanie promieniowania.

STOPIENIE REAKTORA JĄDROWEGO W CZARNOBYLU
Opis zdarzeń w dniach 25 i 26 kwietnia:
25 kwietnia, godzina 13.00 inżynierowie elektrycy w związku z zaplanowanymi próbami polecili wpuścić pręty regulacyjne w rdzeń reaktora wodnego - ciśnieniowego o moderatorze grafitowym, chłodzonego wodą zwykłą. Termiczna moc spadła przy tym z prawidłowych 3 200 MW na 1 600 MW. Zapotrzebowanie mocy zmalało i dla wygody o 14:00 został wyłączony system chłodzenia zagrożeniowego, który zużywał moc. Tym samym powstało pierwsze z licznych zagrożeń bezpieczeństwa.
O godzinie 23.10 systemy monitorów przestawiono na małe stopnie mocy, ale operator zapomniał przeprogramować komputer, aby utrzymać 700 do 1 000 termicznych MW. Moc spadała na niebezpiecznie niski poziom 30 MW. Większość prętów regulacyjnych została wysunięta, aby podnieść moc. Ale w prętach regulacyjnych wytworzył się już produkt rozszczepienia - ksenon. \"Zatruł\" on reakcję. Wbrew przepisom bezpieczeństwa w panicznym działaniu wysunięto wszystkie pręty. Moc wzrosła. 26 kwietnia o 1.03 niezwykła kombinacja małej mocy i wysokiego strumienia elektronów uczyniła niezbędnym liczne ręczne ingerencje w regulację reaktora. Operatorzy wyłączyli sygnały wyłącznika bezpieczeństwa. O godzinie 1.22 komputer wskazał nadmierne promieniowanie, ale operatorzy postanowili ukończyć próby. W tym momencie ostatni sygnał ostrzegawczy nie został nadany, gdy chcieli wyłączyć przyrząd bezpieczeństwa reaktora.
O godzinie 1.23 rozpoczęła się zaplanowana próba. Przy niebezpiecznie niskim poziomie mocy, każdy nawet tak mały wzrost mocy, wyzwalał natychmiastowy dalszy - ogromny wzrost. Operatorzy reagowali błędnymi działaniami, a moc osiągnęła niezrównoważoną 100 - krotna zdolność wytwórczą reaktora. Paliwo uranowe uległo rozpadowi, przedarło się przez powłokę rur i weszło w kontakt z wodą chłodzącą. Potężna eksplozja pary wysadziła zbiornik reaktora oraz betonowe ściany hali i wyrzuciła w powietrze palące się bloki: grafitowy i paliwowy. Pył promieniotwórczy uniósł się wysoko do atmosfery.
Z uwolnionych radioaktywnych izotopów szczególnie niebezpieczne są jod 131 (okres połowicznego rozpadu 8 dni) oraz cez 137 (okres połowicznego rozpadu 30 lat), których połowa ilości znajdujących się w reaktorze dostała się w powietrze.

SKUTKI:
Na miejscu wypadku w wyniku eksplozji i pożaru 187 osób zapadło na ostrą chorobę popromienną, a 31 z nich zmarło. Zniszczony reaktor wyzwolił setki razy więcej promieniowania jonizującego niż zbombardowanie Hiroszimy i Nagasaki. Intensywność promieni gamma na terenie elektrowni przewyższała 100 R/h (rentgenów na godzinę), a to oznacza, że dawka, którą Międzynarodowa Komisja Ochrony Radiologicznej uznaje za maksymalną roczną, została tam przekroczona kilkaset razy w ciągu zaledwie godziny. Natomiast na dachu zniszczonego bloku energetycznego promieniowanie osiągnęło przerażający poziom 100 000 R/h. Zachorowało około 30 tys. ludzi spośród 400 tys. robotników zatrudnionych przy zakopywaniu najbardziej niebezpiecznych odpadów i budowie specjalnego budynku wokół zniszczonego reaktora ochrzczonego \"sarkofagiem\". Liczbę zmarłych w wyniku tragedii oszacowano na około 32 tysiące. Wśród chorych notuje się nie tylko więcej przypadków białaczki i złośliwych guzów, lecz także większą podatność na choroby układu krążenia oraz zwykłe infekcje: bronchit, zapalenie migdałków lub zapalenie płuc. Wdychanie rozproszonego w powietrzu jodu 131 spowodowało bezpośrednio po katastrofie napromieniowanie tarczycy dawkami równoważnymi ponad 200 R u 13 tys. dzieci. (Dopuszczalna dawka roczna dla pracowników przemysłu atomowego jest dwukrotnie mniejsza.) 4 tys. dzieci otrzymało dawki odpowiadające aż 2000 R i zapadło na chroniczne zapalenie tarczycy (jod gromadzi się selektywnie w tym gruczole). Zapalenie tarczycy przebiega wprawdzie bezobjawowo, można już jednak mówić o początku fali zachorowań na nowotwory.
Ludzie masowo zaczęli opuszczać skażone tereny. Miejsce katastrofy opustoszało

. Każdy wynalazek może być wykorzystany w sposób ułatwiający życie człowieka, ale i jako czynnik to życie unicestwiający. Ludzie potrafią prawie każde dobrodziejstwo przemienić w czynnik bardzo niekorzystny, a nawet śmiertelny. Tak właśnie stało się z energią jądrową, którą to wykorzystano do produkcji bomby atomowej. Po wybuchu w Hiroszimie i Nagasaki przyniosła śmierć wielu tysiącom ludzi jak również przysporzyła ogromne straty materialne.

2



Wyszukiwarka

Podobne podstrony:
08 Elektrownie jądrowe obiegi
Elektrownia jądrowa
08 Bezpieczeństwo elektrowni jądrowych
Elektrownia jądrowa, różne
PG Bezpieczeństwo elektrowni jądrowych Wprowadzenie do niezawodności i bezpieczeństwa
ELEKTROWNIE JĄDROWE I ŚRODOWISKO, Fizyka
16 elektrownie jadroweid 16678 Nieznany
Elektrownie jądrowe
Elektronika 6, Studia, Mechatronika, Semestr IV, Podstawy elektroniki, Laborki, ćw. 6
Za i przeciw Elektrownia jądrowa w Polsce, Ekologia
Katastrofa elektrowni jądrowej w Czarnobylu – Wikipedia, wolna encyklopedia
elektrownie jądrowe 2
2 Elektrownie jadrowe
elektrownie jadrowe 2
Elektronie jądrowe, Dr in˙. W˙adys˙aw Brzozowski Cz˙stochowa, 1.11.1995 r.
Elektrownia jądrowa zasada działania
Elektrownia jadrowa za i przeciw, Ochrona Środowiska, Ochrona Środowiska
08 Elektrownie jądrowe obiegi
Elektrownia jądrowa

więcej podobnych podstron