Obliczenie zamkniętego ciągu poligonowego
Oznaczenia punktów |
Kąty α - lewe, β - prawe g c cc |
Azymuty A
g c cc |
Długości boków d |
Przyrosty |
Przyrosty wyrównane |
Współrzędne |
Oznaczenia punktów |
Uwagi, szkice |
|||||||
|
|
|
|
Δx=dcosA |
Δy=dsinA |
Δx
|
Δy |
X |
Y |
|
|
||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
1000,00 |
1000,00 |
5 |
|
|
|
|
|
64 |
32 |
00 |
260,35 |
-6 +138,40 |
+6 +220,52 |
+138,34 |
+220,58 |
|
|
|
|
1 |
140 |
-1 36 |
00 |
|
|
|
|
|
|
|
|
1138,34 |
1220,58 |
1 |
|
|
|
|
|
123 |
97 |
00 |
270,70 |
-6 -99,53 |
+6 +251,74 |
-99,59 |
+251,80 |
|
|
|
|
2 |
96 |
-1 79 |
00 |
|
|
|
|
|
|
|
|
1038,75 |
1472,38 |
2 |
|
|
|
|
|
227 |
19 |
00 |
240,15 |
-6 -218,58 |
+6 -99,48 |
-218,64 |
-99,54 |
|
|
|
|
3 |
139 |
-1 94 |
00 |
|
|
|
|
|
|
|
|
820,11 |
1372,96 |
3 |
|
|
|
|
|
287 |
26 |
00 |
139,93 |
-6 -27,82 |
+6 -137,14 |
-27,88 |
-137,08 |
|
|
|
|
4 |
141 |
-1 30 |
00 |
|
|
|
|
|
|
|
|
792,23 |
1235,88 |
4 |
|
|
|
|
|
345 |
97 |
00 |
314,42 |
-6 +207,82 |
+7 -235,95 |
+207,76 |
-235,88 |
|
|
|
|
5 |
81 |
-1 66 |
00 |
|
|
|
|
|
|
|
|
1000,00 |
1000,00 |
5 |
|
|
|
|
|
64 |
32 |
00 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Δx]p= [Δx]t= |
+0,29 0,00 |
-0,31 0,00 |
=[Δy]p =[Δy]t |
|
|
|
|
|
[β]p= [β]t= |
600 600 |
05 00 |
00 00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fx= |
+0,29 |
-0,31 |
=fy |
|
|
|
|
|
fβ= |
+0 |
05 |
00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fL= fLmax= |
±0,42 ±0,61 |
|
|
|
|
|
|
fβmax= |
±0 |
07 |
00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[d]= 1225,55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|