SPRAWOZDANIE
Ćwiczenie 13: WYZNACZANIE ŚRODKA ZGINANIA
1. OPIS POSZCZEGÓLNYCH DOŚWIADCZEN
Celem ćwiczenia jest wyznaczenie środka zginania (lub ścinania) dwóch cienkościennych belek wspornikowych :
pierwszej - Belki o przekroju rurowym - ½ rury (doświadczenie 1)
drugiej - Belki o przekroju kątowym - kątownik (doświadczenie 2).
Doświadczenia wykonujemy przy pomocy dwóch zestawów odpowiednio dla poszczególnych doświadczeń . W skład każdego zestawu wchodzi:
belka
ruchoma szalka z odważnikami
miarka umożliwiająca określenie położenia szalki
czujniki zegarowe umożliwiające pomiar przemieszczeń
Przy pomocy odważników wywołujemy moment skręcający a na podstawie czujników dalej możemy wyznaczyć kąty skręcenia.
Doświadczenia rozpoczynamy i kończymy od pomiaru przemieszczeń na obu czujnikach przy nie obciążonym układzie. Przy wyznaczeniu kąta obrotu uśredniamy odczyty początkowe z czujników w celu wyeliminowania błędu .Następnie obciążamy układ i dokonujemy pomiarów przemieszczeń w zależności od położenia ciężarka. Następnie wykonujemy wykres funkcji ugięć w zależności od obciążenia . Punkt w którym proste z poszczególnych czujników się przecinają jest szukanym środkiem zginania .
Doświadczenie 1:
Na końcu pręta znajduje się szalka zamocowana prostopadle do pręta (1/2 rury). Na szalce znajduje się obciążenie równe 5kg co powoduje siłę P=5kg ≈ 5*9,81=49,05 N.
Doświadczenie 2:
Na końcu pręta znajduje się szalka zamocowana prostopadle do pręta (kątownik). Na szalce znajduje się obciążenie równe 5kg co powoduje siłę P=5kg ≈ 5*9,81=49,05 N.
2.WYNIKI POMIARÓW
2.1 PRZEKRÓJ 1/2 RURY (Belki o przekroju rurowym)
- Odczyty początkowe przy nieobciążonym układzie:
fL1 = 3,00 fP1= 4,90
- Odczyty końcowe przy nieobciążonym układzie:
fL2 = 2,98 fP2= 4,86
- Średnie odczyty początkowe:
fL0 = 0,5(fL1 + fL2 ) = 0,5 (3,00+2,98) = 2,99
fP0= 0,5(fP1 + fP2) = 0,5 (4,90+4,86) = 4,88
- Kąt skręcenia na podstawie otrzymanych wyników:
2.2 PRZEKRÓJ KĄTOWNIKA (Belki o przekroju kątowym)
- Odczyty początkowe przy nieobciążonym układzie:
fL1 = 2,40 fP1= 3,00
- Odczyty końcowe przy nieobciążonym układzie:
fL2 = 2,38 fP2= 3,02
- Średnie odczyty początkowe:
fL0 = 0,5(fL1 + fL2 ) = 0,5 (2,40+2,38) = 2,39
fP0= 0,5(fP1 + fP2) = 0,5 (3,00+3,02) = 3,01
- Kąt skręcenia na podstawie otrzymanych wyników:
OBLICZENIA TEORETYCZNE
Środek zginania- punkt w którym należy przyłożyć siłę aby zredukować wypadkową naprężeń stycznych ( siła w tym punkcie nie wywołuje skręcania ) .
3.1 PRZEKRÓJ 1/2 RURY (Belki o przekroju rurowym)
R=3,92 cm
δ=0,27
dA=dSδ
dS=Rdϕ
dA=Rδdϕ
y=Rcosϕ
czyli:
∑ MsO=0 , stąd :
T x - ∫ dt R = 0
T x - t R = 0 (1) t- wypadkowa naprężeń stycznych
τ = (Sx T)/(Ix δ) Ix-moment bezwładności przekroju: Ix = 0,5 Π R3δ
Sx-moment statyczny: Sx = ∫ y dA
Sx = ∫ R cosϕ R δ dϕ = ∫ R2 δ cosϕ dϕ = R2 δ cosϕ + c
Wiedząc , że dla: Sx (ϕ = 0) = 0 , stała c = 0 .
Sx = R2 δ sinϕ .
τ = (R2 δ sinϕ T)/( 0,5 Π R3δ δ) = ( 2 sinϕ T)/(R δ Π )
t = ∫ τ dA = ∫ (( 2 sinϕ T )/( R δ Π )) R δ dϕ = ( 2 T ) / Π [ - cosϕ ] = ( 2 T ) / Π [ - ( -1-1)] = 4 T / Π
Podstawiając do równania (1) , otrzymujemy :
Tx = (4 T / Π) R
x = ( 4/Π ) R = 4 (3,92/Π) = 4,99 cm
Zgodnie z przyjętym układem współrzędnych w doświadczeniu odległość od punktu zginania równa się :
e =4,50 - 4,99= -0,49cm
3.2 PRZEKRÓJ PIERŚCIENIOWY OTWARTY (Belki o przekroju kątowym)
Korzystam z warunku jak w 3.1:
∑ MsO=0 , stąd :
Ty x - T1 a - T2 a = 0 (2)
∑X = 0 , stąd :
T1 = T2
∑Y = 0 , stąd :
Ty = T1 + T2
podstawiając do równania (2)
(T1 + T2 ) x = (T1 + T2 ) a
x = a
Wiedząc , że a = 5,3 cm otrzymujemy : x = 5,3 cm .
Zgodnie z przyjętym układem wsp. w doświadczeniu odległość od punktu zginania równa się :
e = 5,50 - 5,30 = 0,20 cm.
4.PORÓWNANIE WYNIKÓW DOŚWIADCZEŃ Z OBLICZENIAMI TEORETYCZNYMI
RODZJ PRZEKROJU |
WARTOŚĆ DOŚWIADCZALNA |
WARTOŚĆ TEORETYCZNA |
RUROWY |
-6,5 |
-4,9 |
KĄTOWY |
1,25 |
2,0 |
5.OBLICZANIE POŁOŻENIA ŚRODKA CIĘŻKOŚCI PRZEKROJU POPRZECZNEGO BELKI .
5.1 PRZEKRÓJ 1/2 RURY (Belki o przekroju rurowym)
R = 3,92 cm .
x = R sinϕ
A = ∫ R δ dϕ = R Π δ
Środek ciężkości S (Xc , Yc) . Xc = Sy/A Yc = Sx/A
Yc = 0 ponieważ moment statyczny wzgl. osi X = 0 - przekrój monosymetryczny .
Xc = Sy/A
Sy = ∫ x dA
Sy = ∫ R sinϕ R δ dϕ
Sy = -R2 δ cosϕ = -R2 δ ( -1-1) = 2 R2 δ
Xc = ( 2 R2 δ )/( 2 Π δ ) = 2 R / Π = 2,496 cm
Zgodnie z przyjętym układem współrzędnych w doświadczeniu Xc = 4,50 - 2,496 = 2,004cm
5.2 PRZEKRÓJ PIERŚCIENIOWY OTWARTY (Belki o przekroju kątowym)
x = 2,65 cm .
A = 2 δ 7,5 = 5,25 cm2 .
Środek ciężkości S (Xc , Yc) . Xc = Sy/A Yc = Sx/A
Yc = 0 ,ponieważ moment statyczny wzgl. osi X = 0 - przekrój monosymetryczny .
Xc = Sy/A
Sy = A x
Sy = 5,25 ∗ 2,65 = 13,91 cm3
Xc = 13,91/5,25 = 2,65 cm
Zgodnie z przyjętym układem współrzędnych w doświadczeniu Xc = 5,50 - 2,65 = 2,85cm
POMIAR KĄTA SKRĘCANIA DLA PRZYPADKU OBCIĄŻENIA SIŁĄ PRZYŁĄŻONĄ W ŚRODKU CIĘŻKOŚCI PRZEKROJU POPRZECZNEGO .
6.1 PRZEKRÓJ 1/2 RURY (Belki o przekroju rurowym)
UL = 0,40
UP = - 1, 34
ϕ = ( UL - UP )/a = (0,4+1,43)/200= 0,00915
6.2 PRZEKRÓJ PIERŚCIENIOWY OTWARTY (Belki o przekroju kątowym)
Ul = 0,55
Up = -0,83
ϕ = ( Ul - Up )/a = (0,55+0,83)/200= 0,0069
7.UWAGI WŁASNE
W wykonywanym ćwiczeniu zarówno w doświadczeniu nr 1 jak i w doświadczeniu nr 2 , wyznaczaliśmy środki zginania , czyli punkty w których należy przyłożyć siłę tnącą aby nie wywołała momentu skręcającego .Studiując wykresy funkcji ugięć w zależności od obciążenia znajdujemy punkt przecięcia się dwóch wykresów - jest to punkt w którym nie występuje skręcenie czyli nasz szukany punkt .
Położenie punktu wyznaczone doświadczalnie i teoretycznie różni się nieznacznie zarówno przy przekroju rurowym jak i kątowym . Różnicę tę upatrujemy:
- w niedokładności pomiarów - wiąże się to z niedokładnością przyrządów oraz błędnego
odczytania z czujników pomiarowych .
- niedokładnego naniesienia punktowo wykresu potrzebnego do określenia środka zginania
- niedokładnego odczytu położenia środka zginania z w.w. wykresu .
5
6
Wykonali :
Adam Julicki
Rafał Łupina
Michał Pieczywek