Kierunek i grupa |
Imię, Nazwisko |
Ocena |
|
I rok ETI, L7 |
Darasz Tomasz |
|
|
Temat : Zjawisko Halla (pomiar napięcia Halla i kondensacji nośników). |
|||
|
Wprowadzenie:
Cel doświadczenia:
Zjawisko powstawania napięcia Halla jest jednym z najważniejszych zjawisk, które występują w metalach i półprzewodnikach. Pojawienie się napięcia Halla wynika z faktu,
że pole magnetyczne powoduje ruch nośników prądu po torach zakrzywionych.
Pomiar napięcia Halla pozwala nam wyznaczyć stałą Halla i koncentrację nośników ładunku. Przy znanej koncentracji nośników możemy wyznaczyć wartość indukcji pola magnetycznego działającego na tę próbkę. Parametry te badamy za pomocą urządzenia zwanego hallotronem.
Napięcie Halla obliczamy je ze wzoru:
gdzie RH =
[m3/As]
RH - stała Halla
I
- natężenie prądu płynącego przez próbkę
B - indukcja magnetyczna
D - grubość próbki
Realizacja ćwiczenia:
Przyrządy pomiarowe zostały połączone według poniższych schematów:
Rys. 1. Schemat układu do przepuszczania przez próbkę półprzewodnika (H) prądu sterującego Ix.. (R - opór zabezpieczający, P1 - przełącznik)
Rys. 2. Schemat układu do wytwarzenia pola magnetycznego między biegunami elektromagnesu M
Podczas wykonywania ćwiczenia ważne jest aby próbka umieszczona w polu magnetycznym nie zmieniała swego położenia, gdyż wprowadza to duże zmiany wartości UH.
Pomiarów dokonano dla dwóch wartości prądów magnesujących ( IM ) 1 i 2 [A] przy zmianie prądu sterującego I co 0,5 [mA] w zakresie od 0 do 5mA . Powyższe czynności przeprowadzono dla dwóch kierunków prądu magnesującego . Uzyskane wyniki pomiarów zanotowano w tabelach.
Napięcie Halla obliczamy z zależności :
,
Gdzie: U1 - napięcie na miliwoltomierzu przy pierwszym zwrocie prądu magnesującego,
U2 - napięcie na miliwoltomierzu przy drugim zwrocie prądu magnesującego.
Obliczenia:
Aby obliczyć stałą Halla korzystamy ze wzoru:
Gdzie:
d - grubość płytki półprzewodnikowej która wynosi 8 ⋅ 10-6 [m]
UH - średnia wartość napięcia
B - indukcja magnetyczna
Ix - prąd sterujący
Natomiast aby wyznaczyć koncentrację „n” nośników prądu używamy wzoru:
Gdzie:
R - stała Halla
e - ładunek elementarny elektronu:
Dla: B= 0,4 [T]
UH = 0,02 [V]
IM = 1 [A]
IX = 0,53 [A]
Przykładowe obliczanie stałej Halla (R):
- Przykładowe obliczanie koncentracji nośników ładunku (n):
- całkowite zestawienie otrzymanych wyników:
Lp. |
R * 10-3 |
n * 1022 |
1 |
0,830 |
0,753 |
2 |
0,820 |
0,762 |
3 |
0,813 |
0,768 |
4 |
0,815 |
0,767 |
5 |
0,808 |
0,774 |
6 |
0,810 |
0,772 |
7 |
0,809 |
0,773 |
8 |
0,803 |
0,779 |
9 |
0,800 |
0,781 |
10 |
0,796 |
0,785 |
Średnia wartość: |
0,810 |
0,771 |
b) Dla: B = 0,8 [T]
UH = 0,0195 [V]
IM= 2 [A]
Ix = 2,50 [A]
Przykładowe obliczanie stałej Halla (R):
- Przykładowe obliczanie koncentracji nośników ładunku (n):
L.p |
R * 10-3 |
n * 1022 |
1 |
0,764 |
0,818 |
2 |
0,770 |
0,812 |
3 |
0,767 |
0,815 |
4 |
0,773 |
0,809 |
5 |
0,780 |
0,801 |
6 |
0,777 |
0,805 |
7 |
0,773 |
0,809 |
8 |
0,770 |
0,812 |
9 |
0,764 |
0,818 |
10 |
0,762 |
0,820 |
Średnia wartość: |
0,770 |
0,812 |
Rachunek niepewności:
Δd IM [mA] = 0,14 [mA];
Δ d Ix [mA] = 0,3 [mA]
Δd U = 0,03 * U
Δd I= 0,04 * I
Δd B = 0,05 * B
Odczytane wartości indukcji pola magnetycznego wynoszą:
a) B (IM = 1A) = 0,4 [T] ;
b) B (IM = 2A) = 0,8 [T] ;
gdzie przyjęty błąd odczytu : ΔB = 0,02 [T].
U (B) = 0,05 * 0,4 = 0,02
U (B) = 0,05 * 0,8 = 0,04
Obliczenie niepewności złożonej dla R i n
Dla IM = 1
Dla IM = 2
4. Wnioski:
W ćwiczeniu wyznaczyłem stałą Halla oraz koncentrację nośników prądu.
Otrzymane wartości otrzymałem obliczając średnią arytmetyczną dla 10 pomiarów. Pozwoliło to na otrzymanie dokładniejszych wyników.
Wyniki dla IM = 1 [A]:
R = (0,81 ± 0,16) *10-3
n = (0,77 ± 0,15) *1022
Wyniki dla IM = 2 [A]:
R = (0,77 ± 0,15) * 10-3
n = (0,81 ± 0,15) *1022