AMINOKWASY I BIAŁKA
W latach 1900-1910 niemiecki chemik Emil Fischer udowodnił, że białka zbudowane są z aminokwasów, które powiązane są w długie łańcuchy zwane łańcuchami polipeptydowymi.
Gdy łączą się dwa aminokwasy, otrzymamy dwupeptyd, gdy trzy - trójpeptyd, gdy więcej - wielopeptyd. Peptydy zawierające do 10 reszt aminokwasów nazywamy oligopeptydami, gdy zawierają więcej reszt - polipeptydami.
Peptyd powstaje przez połączenie grupy karboksylowej (-COOH) jednego aminokwasu z grupą aminową (-NH2) drugiego aminokwasu z wydzieleniem cząsteczki wody.
przykład - powstawanie dwupeptydu alanino-alanina z alaniny
Po utworzeniu wiązania peptydowego między dwiema cząsteczkami aminokwasów powstaje wolna grupa aminowa (-NH2) oraz karboksylowa (-COOH). Obie zatem mogą tworzyć dalsze wiązanie peptydowe z innymi aminokwasami.
Dłuższy łańcuch powstaje z połączenia kilku aminokwasów, czyli tzw. wielopeptyd, który można przedstawić następująco
Kwasy monoaminomonokarboksylowe
Gly - glicyna……………………………………………………….
Ala - alanina……………………….
Ser - seryna……
Thr - treonina……………….. …..
Met - metionina…………………………………..
Val - walina………………...
Ile - izoleucyna…..
Leu - leucyna……………………………………………………..…..
Phe - fenyloalanina…
Tyr - tyrozyna………………………………………….
Cys - cysteina………..
Kwasy monoaminodikarboksylowe
Asp - kwas asparaginowy…………………………………
Glu - kwas glutaminowy…….
Kwasy diaminomonokarboksylowe
Arg - arginina………………………………………………………
Lys - lizyna…………………
Aminokwasy zawierające pierścienie heterocykliczne
Pro - prolina………………………………………………………………………………………
His - histydyna……………
Trp - tryptofan………………………………………………….
Aminokwasy zawierające grupę amidową
Asn - asparagina…………………
Gln - glutamina………………………………………………………………………….
Z tablicy wynika, że wszystkie aminokwasy są kwasami (alfa)-aminokarboksylowymi; w dwóch przypadkach (proliny i hydroksyproliny) grupa aminowa wchodzi w skład pierścienia pirolidynowego.
Ta wspólna cecha wyznacza zbiór wspólnych właściwości chemicznych aminokwasów. Jedną z tych właściwości jest zdolność do łączenia się w długie łańcuchy poliamidowe, z których składa się białko.
Stwierdzono, że chociaż aminokwasy przedstawia się jako związki o wzorze H2NCHRCOOH zawierające w cząsteczce grupę aminową i grupę karboksylową, to niektóre ich właściwości zarówno fizyczne jak i chemiczne, nie są zgodne z taką strukturą.
aminokwasy, w przeciwieństwie do amin i kwasów karboksylowych, są nielotnymi krystalicznymi ciałami stałymi, które topią się z rozkładem w dość wysokiej temperaturze
aminokwasy są nierozpuszczalne w niepolarnych rozpuszczalnikach, takich jak eter naftowy, benzen czy eter dietylowy. W wodzie rozpuszczaja się dobrze.
wodne roztwory aminokwasów zachowują się podobnie jak roztwory substancji o dużym momencie dipolowym
Wszystkie te właściwości aminokwasy zawdzięczają istnieniu jonu obojnaczego.
Pod wpływem pola elektrycznego cząsteczki takie nie wędrują do elektrod, czyli zachowują się obojętnie.
Wartość pH, przy której aminokwasy w polu elektrycznym do żadnej z elektrod nie wędrują nazywa się punktem izoelektrycznym albo izojonowym.
Przy dodawaniu jonów wodorowych (kwasu) grupa ujemna przyjmuje protony (jony wodorowe) i ulega rozładowaniu. Cząsteczka zatem przyjmuje ładunek dodatni który zlokalizowany jest przy grupie -NH3+. W tej sytuacji odczyn roztworu zmienia się na kwaśny i aminokwas wędruje w polu elektrycznym do katody, podobnie jak czynią to kationy.
Przy dodawaniu jonów wodorotlenowych OH- (z zasady) do roztworu aminokwasu znajdującego się w punkcie izoelektrycznym, ulega dysocjacji proton (jon H+) znajdujący się przy azocie grupy NH3+, który z jonem OH- tworzy cząsteczki wody. Cząsteczka aminokwasu w takiej sytuacji przyjmuje ładunek ujemny i w polu elektrycznym zachowuje się jak anion.
Można przyjąć, że aminokwas w punkcie izoelektrycznym zachowuje się podobnie jak amfoter, ponieważ reaguje zarówno z kwasami jak i zasadami.
pI = 9.18 + 10.79 10.0
2
Lizyna
Glutamic acid |
|
(R = -CH2CH2CO2-): |
|
pI = 3.1 |
Glycine |
|
(R = -H): |
|
pI = 6.1 |
Lysine |
|
(R = -CH2CH2CH2CH2NH3+): |
|
pI = 10.0 |
Izomeria optyczna
Jest to rodzaj stereoizomerii występującej w cząsteczkach chiralnych, które zawierają atom węgla, do którego przyłączone są cztery różne grupy. Taki atom nosi nazwę centrum chiralności.
A to oznacza, że dla każdej cząsteczki posiadającej centrum chiralności możemy znaleźć drugą cząsteczkę będącą jej lustrzanym odbiciem
Izomeria optyczna wiąże się ze zdolnością skręcania płaszczyzny światła spolaryzowanego. Substancje takie nazywa się optycznie czynnymi; skręcające płaszczyznę światła spolaryzowanego w prawo - nazywa się prawoskrętnymi /+/, a skręcajace w lewo -lewoskrętnymi /-/.
Związki skręcające płaszczyznę światła w prawo zaznacza się za pomocą symbolu (+) przed nazwą związku,
skręcające w lewo symbolem (-).
Na przykład - (+) - glukoza, (-) - fruktoza
Izomery będące wzajemnymi odbiciami lustrzanymi noszą nazwę enacjomerów
Właściwości enancjomerów
Enancjomery mają identyczne właściwości fizyczne z wyjątkiem kierunku skręcania płaszczyzny polaryzacji światła
Enancjomery wykazują identyczne właściwości chemiczne; wyjątkiem jest ich zachowanie się w stosunku do optycznie czynnych reagentów. Oznacza to, że jeżeli reagent jest optycznie czynny, jego wpływ na oba enancjomery nie jest identyczny podczas ataku i dlatego szybkość reakcji jest różna - w niektórych przypadkach tak dalece różna, że reakcja z jednym izomerem w ogóle nie zachodzi.
Równocząsteczkowa mieszanina enacjomerów
nie wykazuje optycznej czynności i nosi nazwę mieszaniny racemicznej
Odmiana racemiczna jest optycznie nieczynna. Jest wynikiem równoważenia skręcalności cząsteczki jednego izomeru przez skręcalność cząsteczki drugiego izomeru.
W celu zaznaczenia racemicznego charakteru określonej próbki stosuje się znak (+/-), jak na przykład kwas (+/-)-mlekowy.
Konfiguracja D- i L-
Często dla względnego charakteryzowania cząstek chiralnych wprowadzono pojęcie konfiguracji D- i L-, co uwidocznione jest w nazwach związków. Na przykład - aldehyd D-glicerynowy, aldehyd L-glicerynowy
Punktem odniesienia dla konfiguracji D- i L- jest budowa cząsteczki aldehydu glicerynowego a konkretnie położenie podstawników H- oraz HO- przy środkowym węglu.
W prezentowanych przykładach w nazwie zaznaczono skręcalność optyczną i konfiguracją D- i L- .Uzyskano tym sposobem pełniejszą nazwę optycznie czynnego związku chemicznego.
Na przykład - D(+) - aldehyd glicerynowy, L(-) - aldehyd glicerynowy.
Konfiguracja R (łac. rectus -prawy) i S (łac. sinister - lewy)
W celu odczytania konfiguracji na podstawie modelu lub wzoru, podstawnikom przy asymetrycznym atomie trzeba najpierw przypisać numery od 1 do 4 według tzw. reguł pierwszeństwa.
Reguły pierwszeństwa podstawników
Reguła 1. Jeżeli wszystkie cztery atomy połączone z centrum chiralności są różne, to pierwszeństwo grup zależy od liczb atomowych, przy czym priorytet ma atom o wiekszej liczbie atomowej. Jeżeli dwa atomy są izotopami tego samego pierwiastka, to pierwszeństwo ma atom o większej liczbie masowej.
Reguła 2 Jeżeli nie można na podstawie reguły 1 ustalić wzglednego pierwszeństwa dwóch grup, to należy przeprowadzic podobne porównanie następnych atomów w tych grupach.
Następnie spoglądamy na cząsteczkę w taki sposób, aby grupa o najniższym pierwszeństwie (4) była jak najdalej od nas oddalona. Trzeba pamiętać, żeby asymetryczny atom węgla znajdował się bliżej obserwatora niż podstawnik 4. Przy takim ustawieniu podstawniki 1, 2, 3 zwrócone są w stronę patrzącego i można wyobrazić sobie, że układają się na okręgu. Jeżeli kolejność 1, 2, 3 jest zgodna z kierunkiem ruchu wskazówek zegara, to taką konfigurację oznaczamy symbolem R a odwrotnej konfiguracji przypisujemy symbol S. Na przykład dla bromochlorojodometanu konfiguracje przedstawiają się następująco
Diastereoizomery
Istnieje grupa związków chemicznych, która zawiera więcej jak jedno centrum chiralności. W tej grupie związków chemicznych obok już wcześniej zdefiniowanych enacjomerów spotykamy się z izomerami nie będące wzajemnymi lustrzanymi odbiciami. Noszą one nazwę diastereoizomerów.
W aminokwasach podobnie jak i w cukrach występuje zjawisko izomerii optycznej i strukturalnej. Przez analogię do cukrów należy spodziewać się wśród aminokwasów odmian L i D oraz (+) i (-).
Jest to spowodowane obecnością w cząsteczkach aminokwasów centr chiralnych (z wyjątkiem glicyny). Każdy aminokwas z wyjątkiem glicyny może istnieć w tego rodzaju odmianach izomerycznych, różniących się rozmieszczeniem w przestrzeni czterech podstawników związanych z atomem węgla α
Najbardziej zadziwiającym faktem jest to, że tylko jeden z enencjomerów każdego aminokwasu występuje w białkach roślinnych i zwierzęcych i że konfiguracja tego enancjomeru jest taka sama dla wszystkich aminokwasów. Tym enencjomerem jest zawsze odmiana L. Zatem białka po hydrolizie dają zawsze α - aminokwasy odmiany L.
Zjawisko to jest tym ciekawsze, że nie udało się dotychczas wyjaśnić, dlaczego organizmy żywe budują wyłącznie cząsteczki α - L-aminokwasów.
Strukturę białek najczęściej rozpatruje się w czterech aspektach, tj.
struktury pierwszorzędowej - określa, w jaki sposób atomy w cząsteczkach białka są z sobą połączone wiązaniami kowalencyjnymi, czyli jak tworzą się łańcuchy. Inaczej struktura pierwszorzędowa określa kolejność aminokwasów w łańcuchu białkowym.
struktury drugorzędowej - określa, w jaki sposób utworzone łańcuchy są ułożone w przestrzeni, czyli jakie formy przestrzenne (spirale, arkusze albo kule) tworzą one za pomocą wiązań wodorowych, łączących różne łańcuchy lub różne części tego samego łańcucha
struktura trzeciorzędowa - określa najbardziej korzystne uporządkowanie przestrzenne poszczególnych części cząsteczki białka z punktu widzenia energetycznego; zależy od oddziaływań między łańcuchami bocznymi jednej lub większej liczby makrocząsteczek.
struktura czwartorzędowa - określa sposób przestrzennego powiązania kilku cząsteczek w jedną złożoną strukturę białka.
Struktura pierwszorzędowa
Jak wiemy białka są produktami kondensacji wielu aminokwasów. Z dotychczasowych doświadczeń wynika, że aminokwasy nie są połączone między sobą w sposób przypadkowy, lecz kolejność ich jest specyficzna i charakterystyczna dla określonego białka. Ta uporządkowana kolejność nazywana jest sekwencją aminokwasów w białku. Sekwencja aminokwasów może na przykład wyglądać następująco:
H2N Tyr-Tre-Wal-Asp-Leu-Gli-Gli-Cys-His COOH
Białka zbudowane są z łańcuchów peptydowych w którym do co trzeciego atomu jest przyłączony łańcuch boczny (R1, R2, R3, R4)…
Struktura łańcucha bocznego zależy od reszty określonego aminokwasu, np. w przypadku :
glicyny jest to atom - H,
alaniny - grupa (-CH3),
waliny - grupa (-CH(CH3)2), itd
Niektóre z tych bocznych łańcuchów zawierają grupy zasadowe, np. grupę -NH2 i grupy kwasowe -COOH.
Ze względu na obecność tych kwasowych i zasadowych łańcuchów bocznych wzdłuż łańcucha peptydowego rozmieszczone są grupy naładowane dodatnio lub ujemnie.
I właśnie ta charakterystyczna dla określonego białka sekwencja łańcuchów bocznych, nadaje mu charakterystyczne właściwości
Struktura drugorzędowa
Termin "struktura drugorzędowa" określa wzajemne, przestrzenne ułożenie aminokwasów w łańcuchu białkowym o określonej sekwencji. Badania prowadzone metodami rentgenowskimi udowodniły, że nie wszystkie możliwe struktury łańcucha białkowego są jednakowo cenne pod względem trwałości.
Najtrwalsze muszą zawierać maksymalną liczbę wiązań wodorowych między grupami karbonylowymi -C=O i grupami -N-H występującymi w wiązaniu peptydowym. Wiązania wodorowe będą silnie stabilizować strukturę, jednakże aby mogły powstać, odpowiednie grupy muszą znaleźć się w odległości oddziaływań wodorowych.
W przypadku białek z grupy skleroproteidów trwała struktura osiągana jest dzięki oddziaływaniom wodorowym między dwoma łańcuchami białkowymi biegnącymi równolegle do siebie. Tworzą one wtedy tzw. strukturę "pofałdowanej kartki (harmonijki)". Taka struktura nazywana jest również strukturą beta.
To pofałdowanie powstaje w wyniku ściągnięcia łańcuchów peptydowych,
przez co zmienia się geometria wiązania peptydowego aminokwasu z płaskiej na pofałdowaną.
Uzyskujemy wtedy bardziej korzystną strukturę do rozmieszczenia małych lub średnich łańcuchów bocznych.
W tej strukturze każdy łańcuch jest połączony z innymi łańcuchami wiązaniem wodorowym (=O -- H-).
Na rysunku wiązanie wodorowe zaznaczone jest kolorem różowym.
Struktura pofałdowana jest korzystna dla białek w których łańcuchy boczne są małe.
Gdy łańcuchy boczne są bardzo duże, wówczas najlepsze rozmieszczenie zapewnia struktura innego rodzaju, w której każdy łańcuch jest zwinięty i tworzy heliks (struktura alfa)
Łańcuch peptydowy jest tu spiralnie owinięty wokół hipotetycznego walca z taką gęstością zwojów, aby grupy -C=O i -N-H zwojów sąsiadujących ze sobą znalazły się w odległości odpowiedniej do utworzenia wiązań wodorowych. Z tego wynika, że różne fragmenty tego samego łańcucha są połączone wiązaniami wodorowymi, które pomagają utrzymać strukturę heliksu.
Struktura trzeciorzędowa
Struktura trzeciorzędowa określa sposób w jaki układają się i fałdują w przestrzeni łańcuchy białkowe o określonej strukturze drugorzędowej. Zwoje i fałdy jakie tutaj się obserwuje są utrzymywane różnego typu wiązaniami. Tymi wiązaniami są: wiązania wodorowe - które mogą powstawać między resztami aminokwasów zawierających grupy funkcyjne, nie związane wiązaniami peptydowymi (seryna, arginina, treonina, kwas glutaminowy), mostki siarczkowe - powstające między resztkami cysteiny, które łączą różne punkty spirali, zaginając ją w odpowiedni sposób, prolina (aminokwas z grupą aminową umieszczoną w pierścieniu) - która może w różny sposób oddziaływać na strukturę drugorzędową.
Struktura czwartorzędowa
Struktura czwartorzędowa określa występowanie niektórych białek w postaci agregatów kilku podobnych lub nawet identycznych podjednostek o charakterze białkowym. Przykładem jest hemoglobina gdzie cztery pofałdowane łańcuchy hemoglobiny są do siebie dopasowane i tworzą w przybliżeniu kulistą cząsteczkę (o wymiarach 6,4x5,5x5,0).
Denaturacja białka
Denaturacja białka polega ogólnie na takiej zmianie jego budowy przestrzennej, która powoduje zanik aktywności biologicznej (tj. np. aktywności enzymu białkowego). Czynniki wywołujące denaturację, powodują na ogół rozerwanie w pierwszym rzędzie słabych oddziaływań, utrzymujących struktury wyższych rzędów (np. rozerwanie mostków dwusiarczkowych, zniesienie oddziaływań wodorowych, itp.)
Wiele różnych substancji działa na białka denaturująco. Wśród nich są kwasy, zasady, alkohol, stężone roztwory mocznika. Czynnikiem denaturującym jest również temperatura. W większości wypadków denaturacja białek jest procesem nieodwracalnym.
Ze względu na złożoną i wielopostaciową strukturę molekularną, białka występują w różnych formach oraz wykazują różnorodność właściwości biologicznych. Są zasadniczym i ilościowo najobficiej występującym składnikiem komórek. W suchej masie ciała dorosłego człowieka zawartość białek sięga 56%. Białka są obecne w każdej komórce, we krwi, płynach tkankowych i mózgowo-rdzeniowych, limfie itp.
Odgrywają dużą rolę w regulacji ciśnienia osmotycznego, stężenia jonów wodorowych spełniając rolę buforów, dalej biorą udział w krzepnięciu krwi i procesach odpornościowych. Białka jako enzymy spełniają rolę katalizatorów, a jako hormony regulują przemianę materii.
Wszystkie białka zawierają azot (ok. 16%), poza tym węgiel, wodór, tlen, a często i inne pierwiastki, np. siarkę, fosfor, żelazo i miedź.
Białka dzieli się na dwie obszerne klasy;
białka fibrylarne (inaczej włókniste lub włókiennikowe)
białka globularne (inaczej białka kuliste lub kłębuszkowe)
Białka fibrylarne
Białka fibrylarne są materiałem budulcowym organizmów zwierzęcych. Głównymi białkami fibrylarnymi są:
keratyna (białko znajdujące się we włosach, paznokciach i mięśniach oraz rogach, kolcach i piórach zwierząt)
kolagen (białko znajdujące się w ścięgnach, skórze, kościach i w tkance łącznej występującej między komórkami).Cząsteczki tej grupy białek są długie i nitkowate, mają skłonność do układania się obok siebie i tworzenia włókien.
Białka globularne
Białka globularne są pofałdowane, dzięki czemu tworzą zwarte jednostki, które często przybierają kształty kuliste. Przedstawicielami tej grupy białek są:
albuminy (albumina surowicy krwi, owoalbumina występująca w białku jaja, laktoalbumina)
globuliny (globulina surowicy, fibrynogen krwi,globulina jaja występująca w białku jaja, laktoglobulina).
Białka globularne pełnią cały szereg funkcji związanych z podtrzymaniem i regulacją procesów życiowych; pełnienie tych funkcji wymaga ruchliwości białek, a zatem ich rozpuszczalności. Z tych białek są zbudowane: wszystkie enzymy, wiele hormonów (insulina, tereoglobulina, przeciwciała, hemoglobina, fibrynogen).
Jak już wspomniano, pod względem chemicznym białka są wielkocząsteczkowymi polimerami o masie cząsteczkowej od 10000 do kilku milionów, np. ciężar cząsteczkowy insuliny wynosi 12000, albuminy 44000, hemoglobiny 68000, globuliny 167000, a hemocjaniny 6700000.
Białka posiadają strukturę koloidalną
Uwzględniając właściwości fizykochemiczne białka dzielimy na:
białka proste albo proteiny (poddane procesowi hydrolizy rozpadają się wyłącznie na aminokwasy)
białka złożone albo proteidy, których część białkowa jest związana ze składnikiem niebiałkowym zwanym grupą prostetyczną.
Białka proste - proteiny
Do białek prostych zaliczamy te, które hydrolizując dają jedynie aminokwasy.
Białka proste dzielimy:
protaminy -posiadaja masę cząsteczkową (1000 - 80000) o przewadze zasadowych aminokwasów. Ptotaminy z kwasami dezoksyrybonukleinowymi tworzą połączenia zwane nukleoproteidami
albuminy - białka zwierzęce i roślinne. W skład albumin wchodzą wszystkie aminokwasy; dobrze rozpuszczają się w wodzie. Spotykamy je w białku jaja kurzego, w osoczu krwi i mleku.
globuliny - szeroko rozpowszechnione białko w świecie roslinnym i zwierzęcym. Spotykane są w osoczu krwi, mleku i białku jaja kurzego
histony - występują w jądrze komórkowym. Bogate w histony są gruczoły grasicy
prolaminy - białka roślinne, nierozpuszczalne w wodzie. Są składnikiem mąki. Prolaminy zawierają dużo kwasu glutaminowego
gluteliny - podobne do prolamin
keratyny - należą do nich przede wszystkim białka tkanki łącznej tworów zrogowaciałych (paznokcie, pióra i włosy)
Białka złożone - proteidy
Są to białka, w których część białkowa związana jest ze składnikiem prostetycznym. Białka złożone hydrolizują na aminokwasy, kwasy, cukry, barwniki, witaminy, itp. Do białek złożonych zaliczamy:
nukleoproteidy - są podstawową masą komórki i wchodzi w skład protoplazmy.
chromoproteidy - białka posiadające jako grupę prostetyczną substancję barwną. Do tej grupy należy hemoglobina - substancja barwna czerwonych ciałek krwi.
metaloproteidy - białka zawierające w części niebiałkowej grupę prostetyczną składającą się z metali, które jednak nie wchodzą w skład substancji barwnej. Do tych białek należy ferrytyna, zawierająca około 20% żelaza, które następnie dostarcza dla syntezy hemoglobiny
fosfoproteidy - zawieraja kwas fosforowy związany z białkiem w postaci estru. Fosfoproteidami są: kazeina mleka, witelina żółtka jaj.
glikoproteidy - białka zawierające w grupie prostetycznej cukrowce
lipoproteidy - białka, które w grupie prostetycznej zawierają lipidy. spotykane są w osoczu krwi, żółtku jaja kurzego.
9